Zero- and Few-Shot Event Detection via Prompt-Based Meta Learning

Zhenrui Yue, Huimin Zeng, Mengfei Lan, Heng Ji, Dong Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

With emerging online topics as a source for numerous new events, detecting unseen/rare event types presents an elusive challenge for existing event detection methods, where only limited data access is provided for training. To address the data scarcity problem in event detection, we propose MetaEvent, a meta learning-based framework for zero- and few-shot event detection. Specifically, we sample training tasks from existing event types and perform meta training to search for optimal parameters that quickly adapt to unseen tasks. In our framework, we propose to use the clozebased prompt and a trigger-aware soft verbalizer to efficiently project output to unseen event types. Moreover, we design a contrastive meta objective based on maximum mean discrepancy (MMD) to learn class-separating features. As such, the proposed MetaEvent can perform zero-shot event detection by mapping features to event types without any prior knowledge. In our experiments, we demonstrate the effectiveness of MetaEvent in both zero-shot and few-shot scenarios, where the proposed method achieves state-of-the-art performance in extensive experiments on benchmark datasets FewEvent and MAVEN.

Original languageEnglish (US)
Title of host publicationLong Papers
PublisherAssociation for Computational Linguistics (ACL)
Pages7928-7943
Number of pages16
ISBN (Electronic)9781959429722
DOIs
StatePublished - 2023
Event61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada
Duration: Jul 9 2023Jul 14 2023

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Country/TerritoryCanada
CityToronto
Period7/9/237/14/23

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Zero- and Few-Shot Event Detection via Prompt-Based Meta Learning'. Together they form a unique fingerprint.

Cite this