Abstract
The elastic and failure mechanical properties of hydrogen-free tetrahedral amorphous carbon (ta-C) MEMS structures were investigated via in situ direct and local displacement measurements by a method that integrates atomic force microscopy (AFM) with digital image correlation (DIG). On-chip MEMS-scale specimens were tested via a custom-designed apparatus that was integrated with an AFM to conduct in situ uniaxial tension tests. Specimens 10 μm and 50 μm wide and of 1.5 μm average thickness were used to measure the elastic properties while 340 μm wide tension specimens with a central elliptical perforation resulting in a stress concentration factor of 27 were tested to investigate local effects on material strength. The Young's modulus, Poisson's ratio and tensile strength were measured as 759 ± 22 GPa, 0.17 ± 0.03 and 7.3 ± 1.2 GPa, respectively. In an effort to understand the effect of local defects and assess the true material strength, the local failure stress at sharp central elliptical notches with a stress concentration factor of 27 was measured to be 11.4 ± 0.8 GPa. The AFM/DIC method provided for the first time local displacement fields in the vicinity of microscale perforations and these displacement fields were in accordance with those predicted by linear elasticity.
Original language | English (US) |
---|---|
Pages (from-to) | 728-735 |
Number of pages | 8 |
Journal | Journal of Micromechanics and Microengineering |
Volume | 15 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2005 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering