TY - JOUR
T1 - Younger and older users' recognition of virtual agent facial expressions
AU - Beer, Jenay M.
AU - Smarr, Cory Ann
AU - Fisk, Arthur D.
AU - Rogers, Wendy A.
N1 - Funding Information:
This research was supported in part by a Grant from the National Institutes of Health (National Institute on Aging) Grant P01 AG17211 under the auspices of the Center for Research and Education on Aging and Technology Enhancement (CREATE; www.create-center.org ).
Publisher Copyright:
© 2014 Elsevier Ltd. All rights reserved.
PY - 2015/3
Y1 - 2015/3
N2 - As technology advances, robots and virtual agents will be introduced into the home and healthcare settings to assist individuals, both young and old, with everyday living tasks. Understanding how users recognize an agent's social cues is therefore imperative, especially in social interactions. Facial expression, in particular, is one of the most common non-verbal cues used to display and communicate emotion in on-screen agents (Cassell et al., 2000). Age is important to consider because age-related differences in emotion recognition of human facial expression have been supported (Ruffman et al., 2008), with older adults showing a deficit for recognition of negative facial expressions. Previous work has shown that younger adults can effectively recognize facial emotions displayed by agents (Bartneck and Reichenbach, 2005; Courgeon et al., 2009, 2011; Breazeal, 2003); however, little research has compared in-depth younger and older adults' ability to label a virtual agent's facial emotions, an import consideration because social agents will be required to interact with users of varying ages. If such age-related differences exist for recognition of virtual agent facial expressions, we aim to understand if those age-related differences are influenced by the intensity of the emotion, dynamic formation of emotion (i.e., a neutral expression developing into an expression of emotion through motion), or the type of virtual character differing by human-likeness. Study 1 investigated the relationship between age-related differences, the implication of dynamic formation of emotion, and the role of emotion intensity in emotion recognition of the facial expressions of a virtual agent (iCat). Study 2 examined age-related differences in recognition expressed by three types of virtual characters differing by human-likeness (non-humanoid iCat, synthetic human, and human). Study 2 also investigated the role of configural and featural processing as a possible explanation for age-related differences in emotion recognition. First, our findings show age-related differences in the recognition of emotions expressed by a virtual agent, with older adults showing lower recognition for the emotions of anger, disgust, fear, happiness, sadness, and neutral. These age-related difference might be explained by older adults having difficulty discriminating similarity in configural arrangement of facial features for certain emotions; for example, older adults often mislabeled the similar emotions of fear as surprise. Second, our results did not provide evidence for the dynamic formation improving emotion recognition; but, in general, the intensity of the emotion improved recognition. Lastly, we learned that emotion recognition, for older and younger adults, differed by character type, from best to worst: human, synthetic human, and then iCat. Our findings provide guidance for design, as well as the development of a framework of age-related differences in emotion recognition.
AB - As technology advances, robots and virtual agents will be introduced into the home and healthcare settings to assist individuals, both young and old, with everyday living tasks. Understanding how users recognize an agent's social cues is therefore imperative, especially in social interactions. Facial expression, in particular, is one of the most common non-verbal cues used to display and communicate emotion in on-screen agents (Cassell et al., 2000). Age is important to consider because age-related differences in emotion recognition of human facial expression have been supported (Ruffman et al., 2008), with older adults showing a deficit for recognition of negative facial expressions. Previous work has shown that younger adults can effectively recognize facial emotions displayed by agents (Bartneck and Reichenbach, 2005; Courgeon et al., 2009, 2011; Breazeal, 2003); however, little research has compared in-depth younger and older adults' ability to label a virtual agent's facial emotions, an import consideration because social agents will be required to interact with users of varying ages. If such age-related differences exist for recognition of virtual agent facial expressions, we aim to understand if those age-related differences are influenced by the intensity of the emotion, dynamic formation of emotion (i.e., a neutral expression developing into an expression of emotion through motion), or the type of virtual character differing by human-likeness. Study 1 investigated the relationship between age-related differences, the implication of dynamic formation of emotion, and the role of emotion intensity in emotion recognition of the facial expressions of a virtual agent (iCat). Study 2 examined age-related differences in recognition expressed by three types of virtual characters differing by human-likeness (non-humanoid iCat, synthetic human, and human). Study 2 also investigated the role of configural and featural processing as a possible explanation for age-related differences in emotion recognition. First, our findings show age-related differences in the recognition of emotions expressed by a virtual agent, with older adults showing lower recognition for the emotions of anger, disgust, fear, happiness, sadness, and neutral. These age-related difference might be explained by older adults having difficulty discriminating similarity in configural arrangement of facial features for certain emotions; for example, older adults often mislabeled the similar emotions of fear as surprise. Second, our results did not provide evidence for the dynamic formation improving emotion recognition; but, in general, the intensity of the emotion improved recognition. Lastly, we learned that emotion recognition, for older and younger adults, differed by character type, from best to worst: human, synthetic human, and then iCat. Our findings provide guidance for design, as well as the development of a framework of age-related differences in emotion recognition.
KW - Aging
KW - Emotion expression
KW - Emotion recognition
KW - Older adults
KW - Virtual agents
KW - Younger adults
UR - http://www.scopus.com/inward/record.url?scp=84919807805&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84919807805&partnerID=8YFLogxK
U2 - 10.1016/j.ijhcs.2014.11.005
DO - 10.1016/j.ijhcs.2014.11.005
M3 - Article
C2 - 25705105
AN - SCOPUS:84919807805
SN - 1071-5819
VL - 75
SP - 1
EP - 20
JO - International Journal of Human Computer Studies
JF - International Journal of Human Computer Studies
ER -