Yellow Mealworm (Tenebrio molitor) and Lesser Mealworm (Alphitobius diaperinus) Proteins Slowed Weight Gain and Improved Metabolism of Diet-Induced Obesity Mice

Yifei Kang, Catherine C. Applegate, Fei He, Patricia M. Oba, Miranda D. Vieson, Lorena Sánchez-Sánchez, Kelly S. Swanson

Research output: Contribution to journalArticlepeer-review

Abstract

Background: High-protein diets not only meet amino acid needs but also modulate satiety and energy metabolism. Insect-based proteins are sustainable, high-quality proteins. Mealworms have been studied, but limited information is known about their ability to impact metabolism and obesity. Objective: We determined the effects of defatted yellow mealworm (Tenebrio molitor)- and whole lesser mealworm (Alphitobius diaperinus)-based proteins on the body weight (BW), serum metabolites, and liver and adipose tissue (AT) histology and gene expression of diet-induced obesity mice. Methods: Male C57BL/6J mice were fed a high-fat diet (HFD; 46% kcal) to induce obesity and metabolic syndrome. Obese mice were then assigned to treatments (n = 10/group) and fed for 8 wk: HFD: HFD with casein protein; B50: HFD with 50% protein from whole lesser mealworm; B100: HFD with 100% protein from whole lesser mealworm; Y50: HFD with 50% protein from defatted yellow mealworm; Y100: HFD with 100% protein from defatted yellow mealworm. Lean mice (n = 10) fed a low-fat-diet (LFD; 10% kcal) were included. Longitudinal food intake, BW, body composition, and glucose response were measured. At time of killing, serum metabolites, tissue histopathology and gene expression, and hepatic triglycerides were analyzed. Results: After 8 wk, HFD, B50, and B100 had greater (P < 0.05) weight gain than LFD, whereas Y50 and Y100 did not. Y50, B100, and Y100 had a lower (P < 0.05) BW change rate than HFD. Mealworm-based diets led to increased (P < 0.05) serum high-density lipoprotein (HDL) and reduced (P < 0.05) serum low-density lipoprotein (LDL) concentrations and reduced (P<0.05) LDL/HDL ratio. Mealworm-based diets led to increased (P < 0.05) hepatic expression of genes related to energy balance, immune response, and antioxidants and reduced (P < 0.05) AT expression of genes associated with inflammation and apoptosis. Mealworm-based diets altered (P < 0.05) hepatic and AT expression of glucose and lipid metabolism genes. Conclusions: In addition to serving as an alternative protein source, mealworms may confer health benefits to obese patients.

Original languageEnglish (US)
Pages (from-to)2237-2248
Number of pages12
JournalJournal of Nutrition
Volume153
Issue number8
DOIs
StatePublished - Aug 2023

Keywords

  • alternative protein
  • insect protein
  • lipid metabolism
  • metabolic syndrome
  • obese mice

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Nutrition and Dietetics

Fingerprint

Dive into the research topics of 'Yellow Mealworm (Tenebrio molitor) and Lesser Mealworm (Alphitobius diaperinus) Proteins Slowed Weight Gain and Improved Metabolism of Diet-Induced Obesity Mice'. Together they form a unique fingerprint.

Cite this