Whole-Body Dynamic Telelocomotion: A Step-to-Step Dynamics Approach to Human Walking Reference Generation

Guillermo Colin, Joseph Byrnes, Youngwoo Sim, Patrick M. Wensing, Joao Ramos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Teleoperated humanoid robots hold significant potential as physical avatars for humans in hazardous and inaccessible environments, with the goal of channeling human intelligence and sensorimotor skills through these robotic counterparts. Precise coordination between humans and robots is crucial for accomplishing whole-body behaviors involving locomotion and manipulation. To progress successfully, dynamic synchronization between humans and humanoid robots must be achieved. This work enhances advancements in whole-body dynamic telelocomotion, addressing challenges in robustness. By embedding the hybrid and underactuated nature of bipedal walking into a virtual human walking interface, we achieve dynamically consistent walking gait generation. Additionally, we integrate a reactive robot controller into a whole-body dynamic telelocomotion framework. Thus, allowing the realization of telelocomotion behaviors on the full-body dynamics of a bipedal robot. Real-time telelocomotion simulation experiments validate the effectiveness of our methods, demonstrating that a trained human pilot can dynamically synchronize with a simulated bipedal robot, achieving sustained locomotion, controlling walking speeds within the range of 0.0 m/s to 0.3 m/s, and enabling backward walking for distances of up to 2.0 m. This research contributes to advancing teleoperated humanoid robots and paves the way for future developments in synchronized locomotion between humans and bipedal robots.

Original languageEnglish (US)
Title of host publication2023 IEEE-RAS 22nd International Conference on Humanoid Robots, Humanoids 2023
PublisherIEEE Computer Society
ISBN (Electronic)9798350303278
DOIs
StatePublished - 2023
Externally publishedYes
Event22nd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2023 - Austin, United States
Duration: Dec 12 2023Dec 14 2023

Publication series

NameIEEE-RAS International Conference on Humanoid Robots
ISSN (Print)2164-0572
ISSN (Electronic)2164-0580

Conference

Conference22nd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2023
Country/TerritoryUnited States
CityAustin
Period12/12/2312/14/23

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Hardware and Architecture
  • Human-Computer Interaction
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Whole-Body Dynamic Telelocomotion: A Step-to-Step Dynamics Approach to Human Walking Reference Generation'. Together they form a unique fingerprint.

Cite this