Where in the world do bacteria experience oxidative stress?

Research output: Contribution to journalReview articlepeer-review


Reactive oxygen species – superoxide, hydrogen peroxide and hydroxyl radicals – have long been suspected of constraining bacterial growth in important microbial habitats and indeed of shaping microbial communities. Over recent decades, studies of paradigmatic organisms such as Escherichia coli, Salmonella typhimurium, Bacillus subtilis and Saccharomyces cerevisiae have pinpointed the biomolecules that oxidants can damage and the strategies by which microbes minimize their injuries. What is lacking is a good sense of the circumstances under which oxidative stress actually occurs. In this MiniReview several potential natural sources of oxidative stress are considered: endogenous ROS formation, chemical oxidation of reduced species at oxic–anoxic interfaces, H 2 O 2 production by lactic acid bacteria, the oxidative burst of phagocytes and the redox-cycling of secreted small molecules. While all of these phenomena can be reproduced and verified in the lab, the actual quantification of stress in natural habitats remains lacking – and, therefore, we have a fundamental hole in our understanding of the role that oxidative stress actually plays in the biosphere.

Original languageEnglish (US)
Pages (from-to)521-530
Number of pages10
JournalEnvironmental Microbiology
Issue number2
StatePublished - Feb 1 2019

ASJC Scopus subject areas

  • Microbiology
  • Ecology, Evolution, Behavior and Systematics


Dive into the research topics of 'Where in the world do bacteria experience oxidative stress?'. Together they form a unique fingerprint.

Cite this