TY - JOUR
T1 - Weed diversity affects soybean and maize yield in a long term experiment in Michigan, USA
AU - Ferrero, Rosana
AU - Lima, Mauricio
AU - Davis, Adam S.
AU - Gonzalez-Andujar, Jose L.
N1 - Funding Information:
RF gratefully acknowledges receipt of a grant fromthe Fundación Carolina. JG and RF were supported by FEDER (European Regional Development Funds) and the Spanish Ministry of Economy and Competitiveness funds (AGL2012-33736 and AGL2015-64130-R). RF and ML acknowledge financial support from Center of Applied Ecology & Sustainability (CAPES; CONICYT FB 0002-2014). We are grateful to Laboratorio Internacional en Cambio Global (LINCGlobal) for their support. Finally, we extend our sincere appreciation to the W.K. Kellogg Biological Station Long Term Ecological Research site for access to the time series data on crop yield. Support for this research was also provided by the NSF Long-Term Ecological Research Programat the Kellogg Biological Station and by Michigan State University AgBioResearch.
Publisher Copyright:
© 2017 Ferrero, Lima, Davis and Gonzalez-Andujar.
PY - 2017/2/24
Y1 - 2017/2/24
N2 - Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields. Results of our study indicate that through the proactive management of weed diversity, it may be possible to promote both high productivity of crops and environmental sustainability.
AB - Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields. Results of our study indicate that through the proactive management of weed diversity, it may be possible to promote both high productivity of crops and environmental sustainability.
KW - Climate change
KW - Crop management
KW - Long-term experiment
KW - Maize
KW - Nonlinearity
KW - Soybean
KW - Weed diversity
UR - http://www.scopus.com/inward/record.url?scp=85014810646&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85014810646&partnerID=8YFLogxK
U2 - 10.3389/fpls.2017.00236
DO - 10.3389/fpls.2017.00236
M3 - Article
AN - SCOPUS:85014810646
SN - 1664-462X
VL - 8
JO - Frontiers in Plant Science
JF - Frontiers in Plant Science
M1 - 236
ER -