Weak-pairing higher order topological superconductors

Yuxuan Wang, Mao Lin, Taylor L. Hughes

Research output: Contribution to journalArticle

Abstract

Conventional topological superconductors are fully gapped in the bulk but host gapless Majorana modes on their boundaries. We instead focus on a new class of superconductors, second-order topological superconductors, that have gapped, topological surfaces and gapless Majorana modes instead on lower-dimensional boundaries, i.e., corners of a two-dimensional system or hinges for a three-dimensional system. Here, we propose two general scenarios in which second-order topological superconductivity can be realized spontaneously with weak-pairing instabilities. First, we show that (px+ipy)-wave pairing in a (doped) Dirac semimetal in two dimensions with four mirror-symmetric Dirac nodes realizes second-order topological superconductivity. Second, we show that p+id pairing on an ordinary spin-degenerate Fermi surface realizes second-order topological superconductivity as well. In the latter case, we find that the topological invariants describing the system can be written using simple formulas involving only the low-energy properties of the Fermi surfaces and superconducting pairing. In both cases, we show that these exotic superconducting states can be intrinsically realized in a metallic system with electronic interactions. For the latter case, we also show it can be induced by proximity effect in a heterostructure of cuprate and topological superconductors.

Original languageEnglish (US)
Article number165144
JournalPhysical Review B
Volume98
Issue number16
DOIs
StatePublished - Oct 29 2018

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Weak-pairing higher order topological superconductors'. Together they form a unique fingerprint.

  • Cite this