VUV-Sensitive Silicon Photomultipliers for Xenon Scintillation Light Detection in nEXO

A. Jamil, T. Ziegler, P. Hufschmidt, G. Li, L. Lupin-Jimenez, T. Michel, I. Ostrovskiy, F. Retière, J. Schneider, M. Wagenpfeil, A. Alamre, J. B. Albert, G. Anton, I. J. Arnquist, I. Badhrees, P. S. Barbeau, D. Beck, V. Belov, T. Bhatta, F. BourqueJ. P. Brodsky, E. Brown, T. Brunner, A. Burenkov, G. F. Cao, L. Cao, W. R. Cen, C. Chambers, S. A. Charlebois, M. Chiu, B. Cleveland, M. Coon, M. Côté, A. Craycraft, W. Cree, J. Dalmasson, T. Daniels, L. Darroch, S. J. Daugherty, J. Daughhetee, S. Delaquis, A. Der Mesrobian-Kabakian, R. DeVoe, J. Dilling, Y. Y. Ding, M. J. Dolinski, A. Dragone, J. Echevers, L. Fabris, D. Fairbank, W. Fairbank, J. Farine, S. Feyzbakhsh, R. Fontaine, D. Fudenberg, G. Gallina, G. Giacomini, R. Gornea, G. Gratta, E. V. Hansen, D. Harris, M. Hasan, M. Heffner, J. Hößl, E. W. Hoppe, A. House, M. Hughes, Y. Ito, A. Iverson, C. Jessiman, M. J. Jewell, X. S. Jiang, A. Karelin, L. J. Kaufman, T. Koffas, S. Kravitz, R. Krücken, A. Kuchenkov, K. S. Kumar, Y. Lan, A. Larson, D. S. Leonard, S. Li, Z. Li, C. Licciardi, Y. H. Lin, P. Lv, R. MacLellan, B. Mong, D. C. Moore, K. Murray, R. J. Newby, Z. Ning, O. Njoya, F. Nolet, O. Nusair, K. Odgers, A. Odian, M. Oriunno, J. L. Orrell, G. S. Ortega, C. T. Overman, S. Parent, A. Piepke, A. Pocar, J. F. Pratte, D. Qiu, V. Radeka, E. Raguzin, T. Rao, S. Rescia, A. Robinson, T. Rossignol, P. C. Rowson, N. Roy, R. Saldanha, S. Sangiorgio, S. Schmidt, A. Schubert, D. Sinclair, K. Skarpaas, A. K. Soma, G. St-Hilaire, V. Stekhanov, T. Stiegler, X. L. Sun, M. Tarka, J. Todd, T. Tolba, T. I. Totev, R. Tsang, T. Tsang, F. Vachon, B. Veenstra, V. Veeraraghavan, G. Visser, J. L. Vuilleumier, Q. Wang, J. Watkins, M. Weber, W. Wei, L. J. Wen, U. Wichoski, G. Wrede, S. X. Wu, W. H. Wu, Q. Xia, L. Yang, Y. R. Yen, O. Zeldovich, X. Zhang, J. Zhao, Y. Zhou

Research output: Contribution to journalArticlepeer-review

Abstract

Future ton-scale liquefied noble gas detectors depend on efficient light detection in the vacuum ultraviolet (VUV) range. In the past years, silicon photomultipliers (SiPMs) have emerged as a valid alternative to standard photomultiplier tubes or large-area avalanche photodiodes. The next-generation double-beta decay experiment, nEXO, with a 5-ton liquid xenon time projection chamber will use SiPMs for detecting the 175-nm xenon scintillation light, in order to achieve an energy resolution of σ/Qββ = 1%. This paper presents recent measurements of the VUV-HD generation SiPMs from Fondazione Bruno Kessler, Trento, Italy, in two complementary setups. It includes measurements of the photon-detection efficiency (PDE) with gaseous xenon scintillation light in a vacuum setup and dark measurements in a dry nitrogen gas setup. We report improved PDE at 175 nm compared to previous generation devices that would meet the criteria of nEXO. Furthermore, we present the projected nEXO detector light collection and energy resolution that could be achieved by using these SiPMs.

Original languageEnglish (US)
Article number8490731
Pages (from-to)2823-2833
Number of pages11
JournalIEEE Transactions on Nuclear Science
Volume65
Issue number11
DOIs
StatePublished - Nov 2018

Keywords

  • nEXO
  • photodetectors
  • silicon photomultiplier
  • vacuum ultraviolet (VUV) light
  • xenon detectors

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'VUV-Sensitive Silicon Photomultipliers for Xenon Scintillation Light Detection in nEXO'. Together they form a unique fingerprint.

Cite this