Voluntary wheel running does not alter mortality to or immunogenicity of vaccinia virus in mice

A pilot study

Brandt D. Pence, Melissa R. Ryerson, Ariana G.Bravo Cruz, Jeffrey A Woods, Joanna L Shisler

Research output: Contribution to journalArticle

Abstract

Exercise has been shown to improve immune responses to viral infections and vaccines in several mouse models. However, previous pathogen studies have primarily used infections limited to the respiratory tract. Additionally, previous studies have utilized forced treadmill exercise paradigms, and voluntary wheel running (VWR) has been shown to have differential effects on the immune system in non-infection models. We examined whether VWR could improve morbidity and mortality to a 50% lethal dose of vaccinia virus (VACV), a systemic pathogen commonly used to examine immune responses. Additionally, we examined whether VWR could improve antibody response to a replication-deficient strain of VACV, mimicking a vaccination. Male C57Bl/6J mice underwent 8 weeks of VWR or remained sedentary, then were infected intranasally with 105 PFU VACV strain WR and followed 14 days for weight loss. Mice in the vaccination study ran or were sedentary for 8 weeks, then were given 106 PFU of replication-deficient VACV strain MVA intraperitoneally. Blood was collected at 1, 2, and 4 weeks post-inoculation, and anti-VACV IgG titer was determined by ELISA. VWR did not improve mortality due to VACV infection (p = 0.26), although fewer VWR mice (4/10) died compared to sedentary (SED, 6/10). VWR did not prevent body weight loss due to infection compared to SED (p = 0.20), although VWR mice loss slightly less weight compared to SED through the first 6 days post-infection. Food intake was significantly reduced in SED post-infection compared to VWR (p = 0.05). VWR mice developed a greater IgG antibody response, although this was not significant (p = 0.22). In summary, VWR did not protect against mortality to VACV or prevent infection-induced weight loss, and VWR did not enhance antibody responses. However, there were non-significant trends toward VWR-related improvements in these outcomes, and post-infection food intake was improved by VWR.

Original languageEnglish (US)
Article number1123
JournalFrontiers in Physiology
Volume8
Issue numberJAN
DOIs
StatePublished - Jan 5 2018

Fingerprint

Vaccinia virus
Running
Mortality
Infection
Antibody Formation
Weight Loss
Virus Diseases
Vaccination
Eating
Immunoglobulin G
Viral Vaccines
Lethal Dose 50
Viral Load
Respiratory System
Immune System

Keywords

  • Exercise
  • Infection
  • Mortality
  • Vaccinia virus
  • Virus
  • Voluntary wheel running

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this

Voluntary wheel running does not alter mortality to or immunogenicity of vaccinia virus in mice : A pilot study. / Pence, Brandt D.; Ryerson, Melissa R.; Cruz, Ariana G.Bravo; Woods, Jeffrey A; Shisler, Joanna L.

In: Frontiers in Physiology, Vol. 8, No. JAN, 1123, 05.01.2018.

Research output: Contribution to journalArticle

@article{1a49472fda3d4cc8a1705c7691330287,
title = "Voluntary wheel running does not alter mortality to or immunogenicity of vaccinia virus in mice: A pilot study",
abstract = "Exercise has been shown to improve immune responses to viral infections and vaccines in several mouse models. However, previous pathogen studies have primarily used infections limited to the respiratory tract. Additionally, previous studies have utilized forced treadmill exercise paradigms, and voluntary wheel running (VWR) has been shown to have differential effects on the immune system in non-infection models. We examined whether VWR could improve morbidity and mortality to a 50{\%} lethal dose of vaccinia virus (VACV), a systemic pathogen commonly used to examine immune responses. Additionally, we examined whether VWR could improve antibody response to a replication-deficient strain of VACV, mimicking a vaccination. Male C57Bl/6J mice underwent 8 weeks of VWR or remained sedentary, then were infected intranasally with 105 PFU VACV strain WR and followed 14 days for weight loss. Mice in the vaccination study ran or were sedentary for 8 weeks, then were given 106 PFU of replication-deficient VACV strain MVA intraperitoneally. Blood was collected at 1, 2, and 4 weeks post-inoculation, and anti-VACV IgG titer was determined by ELISA. VWR did not improve mortality due to VACV infection (p = 0.26), although fewer VWR mice (4/10) died compared to sedentary (SED, 6/10). VWR did not prevent body weight loss due to infection compared to SED (p = 0.20), although VWR mice loss slightly less weight compared to SED through the first 6 days post-infection. Food intake was significantly reduced in SED post-infection compared to VWR (p = 0.05). VWR mice developed a greater IgG antibody response, although this was not significant (p = 0.22). In summary, VWR did not protect against mortality to VACV or prevent infection-induced weight loss, and VWR did not enhance antibody responses. However, there were non-significant trends toward VWR-related improvements in these outcomes, and post-infection food intake was improved by VWR.",
keywords = "Exercise, Infection, Mortality, Vaccinia virus, Virus, Voluntary wheel running",
author = "Pence, {Brandt D.} and Ryerson, {Melissa R.} and Cruz, {Ariana G.Bravo} and Woods, {Jeffrey A} and Shisler, {Joanna L}",
year = "2018",
month = "1",
day = "5",
doi = "10.3389/fphys.2017.01123",
language = "English (US)",
volume = "8",
journal = "Frontiers in Physiology",
issn = "1664-042X",
publisher = "Frontiers Research Foundation",
number = "JAN",

}

TY - JOUR

T1 - Voluntary wheel running does not alter mortality to or immunogenicity of vaccinia virus in mice

T2 - A pilot study

AU - Pence, Brandt D.

AU - Ryerson, Melissa R.

AU - Cruz, Ariana G.Bravo

AU - Woods, Jeffrey A

AU - Shisler, Joanna L

PY - 2018/1/5

Y1 - 2018/1/5

N2 - Exercise has been shown to improve immune responses to viral infections and vaccines in several mouse models. However, previous pathogen studies have primarily used infections limited to the respiratory tract. Additionally, previous studies have utilized forced treadmill exercise paradigms, and voluntary wheel running (VWR) has been shown to have differential effects on the immune system in non-infection models. We examined whether VWR could improve morbidity and mortality to a 50% lethal dose of vaccinia virus (VACV), a systemic pathogen commonly used to examine immune responses. Additionally, we examined whether VWR could improve antibody response to a replication-deficient strain of VACV, mimicking a vaccination. Male C57Bl/6J mice underwent 8 weeks of VWR or remained sedentary, then were infected intranasally with 105 PFU VACV strain WR and followed 14 days for weight loss. Mice in the vaccination study ran or were sedentary for 8 weeks, then were given 106 PFU of replication-deficient VACV strain MVA intraperitoneally. Blood was collected at 1, 2, and 4 weeks post-inoculation, and anti-VACV IgG titer was determined by ELISA. VWR did not improve mortality due to VACV infection (p = 0.26), although fewer VWR mice (4/10) died compared to sedentary (SED, 6/10). VWR did not prevent body weight loss due to infection compared to SED (p = 0.20), although VWR mice loss slightly less weight compared to SED through the first 6 days post-infection. Food intake was significantly reduced in SED post-infection compared to VWR (p = 0.05). VWR mice developed a greater IgG antibody response, although this was not significant (p = 0.22). In summary, VWR did not protect against mortality to VACV or prevent infection-induced weight loss, and VWR did not enhance antibody responses. However, there were non-significant trends toward VWR-related improvements in these outcomes, and post-infection food intake was improved by VWR.

AB - Exercise has been shown to improve immune responses to viral infections and vaccines in several mouse models. However, previous pathogen studies have primarily used infections limited to the respiratory tract. Additionally, previous studies have utilized forced treadmill exercise paradigms, and voluntary wheel running (VWR) has been shown to have differential effects on the immune system in non-infection models. We examined whether VWR could improve morbidity and mortality to a 50% lethal dose of vaccinia virus (VACV), a systemic pathogen commonly used to examine immune responses. Additionally, we examined whether VWR could improve antibody response to a replication-deficient strain of VACV, mimicking a vaccination. Male C57Bl/6J mice underwent 8 weeks of VWR or remained sedentary, then were infected intranasally with 105 PFU VACV strain WR and followed 14 days for weight loss. Mice in the vaccination study ran or were sedentary for 8 weeks, then were given 106 PFU of replication-deficient VACV strain MVA intraperitoneally. Blood was collected at 1, 2, and 4 weeks post-inoculation, and anti-VACV IgG titer was determined by ELISA. VWR did not improve mortality due to VACV infection (p = 0.26), although fewer VWR mice (4/10) died compared to sedentary (SED, 6/10). VWR did not prevent body weight loss due to infection compared to SED (p = 0.20), although VWR mice loss slightly less weight compared to SED through the first 6 days post-infection. Food intake was significantly reduced in SED post-infection compared to VWR (p = 0.05). VWR mice developed a greater IgG antibody response, although this was not significant (p = 0.22). In summary, VWR did not protect against mortality to VACV or prevent infection-induced weight loss, and VWR did not enhance antibody responses. However, there were non-significant trends toward VWR-related improvements in these outcomes, and post-infection food intake was improved by VWR.

KW - Exercise

KW - Infection

KW - Mortality

KW - Vaccinia virus

KW - Virus

KW - Voluntary wheel running

UR - http://www.scopus.com/inward/record.url?scp=85039994650&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85039994650&partnerID=8YFLogxK

U2 - 10.3389/fphys.2017.01123

DO - 10.3389/fphys.2017.01123

M3 - Article

VL - 8

JO - Frontiers in Physiology

JF - Frontiers in Physiology

SN - 1664-042X

IS - JAN

M1 - 1123

ER -