TY - JOUR
T1 - Voltage controlled Néel vector rotation in zero magnetic field
AU - Mahmood, Ather
AU - Echtenkamp, Will
AU - Street, Mike
AU - Wang, Jun Lei
AU - Cao, Shi
AU - Komesu, Takashi
AU - Dowben, Peter A.
AU - Buragohain, Pratyush
AU - Lu, Haidong
AU - Gruverman, Alexei
AU - Parthasarathy, Arun
AU - Rakheja, Shaloo
AU - Binek, Christian
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Multi-functional thin films of boron (B) doped Cr2O3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H. Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr2O3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission, electric transport and scanning probe microscopy measurements reveal B-dependent TN and resistivity enhancement, spin-canting, anisotropy reduction, dynamic polarization hysteresis and gate voltage dependent orientation of boundary magnetization. The combined effect enables H = 0, voltage controlled, nonvolatile Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of about 100 ps making B:Cr2O3 a promising multifunctional single-phase material for energy efficient nonvolatile CMOS compatible memory applications.
AB - Multi-functional thin films of boron (B) doped Cr2O3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H. Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr2O3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission, electric transport and scanning probe microscopy measurements reveal B-dependent TN and resistivity enhancement, spin-canting, anisotropy reduction, dynamic polarization hysteresis and gate voltage dependent orientation of boundary magnetization. The combined effect enables H = 0, voltage controlled, nonvolatile Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of about 100 ps making B:Cr2O3 a promising multifunctional single-phase material for energy efficient nonvolatile CMOS compatible memory applications.
UR - http://www.scopus.com/inward/record.url?scp=85102572063&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102572063&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-21872-3
DO - 10.1038/s41467-021-21872-3
M3 - Article
C2 - 33723249
AN - SCOPUS:85102572063
SN - 2041-1723
VL - 12
JO - Nature communications
JF - Nature communications
IS - 1
M1 - 1674
ER -