ViTac: Feature Sharing between Vision and Tactile Sensing for Cloth Texture Recognition

Shan Luo, Wenzhen Yuan, Edward Adelson, Anthony G. Cohn, Raul Fuentes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Vision and touch are two of the important sensing modalities for humans and they offer complementary information for sensing the environment. Robots could also benefit from such multi-modal sensing ability. In this paper, addressing for the first time (to the best of our knowledge) texture recognition from tactile images and vision, we propose a new fusion method named Deep Maximum Covariance Analysis (DMCA) to learn a joint latent space for sharing features through vision and tactile sensing. The features of camera images and tactile data acquired from a GelSight sensor are learned by deep neural networks. But the learned features are of a high dimensionality and are redundant due to the differences between the two sensing modalities, which deteriorates the perception performance. To address this, the learned features are paired using maximum covariance analysis. Results of the algorithm on a newly collected dataset of paired visual and tactile data relating to cloth textures show that a good recognition performance of greater than 90% can be achieved by using the proposed DMCA framework. In addition, we find that the perception performance of either vision or tactile sensing can be improved by employing the shared representation space, compared to learning from unimodal data.

Original languageEnglish (US)
Title of host publication2018 IEEE International Conference on Robotics and Automation, ICRA 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2722-2727
Number of pages6
ISBN (Electronic)9781538630815
DOIs
StatePublished - Sep 10 2018
Externally publishedYes
Event2018 IEEE International Conference on Robotics and Automation, ICRA 2018 - Brisbane, Australia
Duration: May 21 2018May 25 2018

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2018 IEEE International Conference on Robotics and Automation, ICRA 2018
Country/TerritoryAustralia
CityBrisbane
Period5/21/185/25/18

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'ViTac: Feature Sharing between Vision and Tactile Sensing for Cloth Texture Recognition'. Together they form a unique fingerprint.

Cite this