TY - JOUR
T1 - Visualizing Precambrian Basement Tectonics beneath a Carbon Capture and Storage Site, Illinois Basin
AU - McBride, John H.
AU - Keach, R. William
AU - Leetaru, Hannes E.
AU - Smith, Katelynn M.
N1 - Publisher Copyright:
© 2018 Society of Exploration Geophysicists and American Association of Petroleum Geologists.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Characterization of Precambrian basement tectonics using 3D reflection seismology is critical for fully constraining the geology of a carbon capture and storage (CCS) site. Our study applies state-of-the-art visualization and attribute analysis to a 3D seismic volume of the basement complex that underlies the Illinois Basin-Decatur Project (IBDP) CCS site. The most successful interpretative techniques used include geo-body analysis, X (east-west, cross-line)-directed amplitude change, and co-rendering (e.g., amplitude with semblance), integrated with gradient analysis. The 3D volume reveals a strong reflector deep within the basement complex that is interpreted to be a mafic sill, disrupted by a coherent pattern of prominent structural discontinuities. The discontinuities, which have a mutually orthogonal northwest-northeast trend, could have formed as part of the intrusion process, as tectonic faults, or a combination of both processes. Our preferred interpretation is that discontinuities are small faults with varying senses of offset. The most prominent of these is a narrow, well-defined northwest-striking crest or flexure in the igneous sill reflector. Injection-induced microseismicity describes a conspicuous pattern of northeast-trending clusters of events, some of which nucleated in the uppermost part of basement, directly over this crest. This distribution of seismic events is proposed to be controlled, in part, by fracture zones related to the crest and associated discontinuities in the mafic sill. These fractures would be oriented in directions to be critically stressed, resulting in aligned microseismicity following pore pressure increases.
AB - Characterization of Precambrian basement tectonics using 3D reflection seismology is critical for fully constraining the geology of a carbon capture and storage (CCS) site. Our study applies state-of-the-art visualization and attribute analysis to a 3D seismic volume of the basement complex that underlies the Illinois Basin-Decatur Project (IBDP) CCS site. The most successful interpretative techniques used include geo-body analysis, X (east-west, cross-line)-directed amplitude change, and co-rendering (e.g., amplitude with semblance), integrated with gradient analysis. The 3D volume reveals a strong reflector deep within the basement complex that is interpreted to be a mafic sill, disrupted by a coherent pattern of prominent structural discontinuities. The discontinuities, which have a mutually orthogonal northwest-northeast trend, could have formed as part of the intrusion process, as tectonic faults, or a combination of both processes. Our preferred interpretation is that discontinuities are small faults with varying senses of offset. The most prominent of these is a narrow, well-defined northwest-striking crest or flexure in the igneous sill reflector. Injection-induced microseismicity describes a conspicuous pattern of northeast-trending clusters of events, some of which nucleated in the uppermost part of basement, directly over this crest. This distribution of seismic events is proposed to be controlled, in part, by fracture zones related to the crest and associated discontinuities in the mafic sill. These fractures would be oriented in directions to be critically stressed, resulting in aligned microseismicity following pore pressure increases.
UR - http://www.scopus.com/inward/record.url?scp=85037073677&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85037073677&partnerID=8YFLogxK
U2 - 10.1190/int-2017-0116.1
DO - 10.1190/int-2017-0116.1
M3 - Article
AN - SCOPUS:85037073677
SN - 2324-8858
VL - 6
JO - Interpretation
JF - Interpretation
IS - 2
ER -