In an increasing number of applications of focused ultrasound (FUS) therapy, such as opening of the blood-brain barrier or collapsing microbubbles in a tumor, elevation of tissue temperature is not involved. In these cases, real-time visualization of the field distribution of the FUS source would allow localization of the FUS beam within the targeted tissue and allow repositioning of the FUS beam during tissue motion. In this paper, in order to visualize the FUS beam in situ, a 6-MHz single-element transducer (f/2) was used as the FUS source and aligned perpendicular to a linear array which passively received scattered ultrasound from the sample. An image of the reconstructed intensity field pattern of the FUS source using bistatic beamforming was then superimposed on a registered B-mode image of the sample acquired using the same linear array. The superimposed image is used to provide anatomical context of the FUS beam in the sample being treated. The intensity field pattern reconstructed from a homogeneous scattering phantom was compared with the field characteristics of the FUS source characterized by the wire technique. The beamwidth estimates at the FUS focus using the in situ reconstruction technique and the wire technique were 1.5 and 1.2 mm, respectively. The depth-of-field estimates for the in situ reconstruction technique and the wire technique were 11.8 and 16.8 mm, respectively. The FUS beams were also visualized in a two-layer phantom and a chicken breast. The novel reconstruction technique was able to accurately visualize the field of an FUS source in the context of the interrogated medium.

Original languageEnglish (US)
Article number8413139
Pages (from-to)124-133
Number of pages10
JournalIEEE transactions on medical imaging
Issue number1
StatePublished - Jan 2019


  • Beam visualization
  • bistatic
  • focused ultrasound
  • monitoring

ASJC Scopus subject areas

  • Software
  • Radiological and Ultrasound Technology
  • Computer Science Applications
  • Electrical and Electronic Engineering


Dive into the research topics of 'Visualization of the intensity field of a focused ultrasound source in Situ'. Together they form a unique fingerprint.

Cite this