TY - GEN
T1 - Vision-based localization and mapping for an autonomous mower
AU - Yang, Junho
AU - Chung, Soon Jo
AU - Hutchinson, Seth
AU - Johnson, David
AU - Kise, Michio
PY - 2013
Y1 - 2013
N2 - This paper presents a vision-based localization and mapping algorithm for an autonomous mower. We divide the task for robotic mowing into two separate phases, a teaching phase and a mowing phase. During the teaching phase, the mower estimates the 3D positions of landmarks and defines a boundary in the lawn with an estimate of its own trajectory. During the mowing phase, the location of the mower is estimated using the landmark and boundary map acquired from the teaching phase. Of particular interest for our work is ensuring that the estimator for landmark mapping will not fail due to the nonlinearity of the system during the teaching phase. A nonlinear observer is designed with pseudo-measurements of each landmark's depth to prevent the map estimator from diverging. Simultaneously, the boundary is estimated with an EKF. Measurements taken from an omnidirectional camera, an IMU, and a ground speed sensor are used for the estimation. Numerical simulations and offline teaching phase experiments with our autonomous mower demonstrate the potential of our algorithm.
AB - This paper presents a vision-based localization and mapping algorithm for an autonomous mower. We divide the task for robotic mowing into two separate phases, a teaching phase and a mowing phase. During the teaching phase, the mower estimates the 3D positions of landmarks and defines a boundary in the lawn with an estimate of its own trajectory. During the mowing phase, the location of the mower is estimated using the landmark and boundary map acquired from the teaching phase. Of particular interest for our work is ensuring that the estimator for landmark mapping will not fail due to the nonlinearity of the system during the teaching phase. A nonlinear observer is designed with pseudo-measurements of each landmark's depth to prevent the map estimator from diverging. Simultaneously, the boundary is estimated with an EKF. Measurements taken from an omnidirectional camera, an IMU, and a ground speed sensor are used for the estimation. Numerical simulations and offline teaching phase experiments with our autonomous mower demonstrate the potential of our algorithm.
UR - http://www.scopus.com/inward/record.url?scp=84893815703&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893815703&partnerID=8YFLogxK
U2 - 10.1109/IROS.2013.6696878
DO - 10.1109/IROS.2013.6696878
M3 - Conference contribution
AN - SCOPUS:84893815703
SN - 9781467363587
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 3655
EP - 3662
BT - IROS 2013
T2 - 2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013
Y2 - 3 November 2013 through 8 November 2013
ER -