Vision-Based Ergonomic Risk Assessment of Back-Support Exoskeleton for Construction Workers in Material Handling Tasks

Yizhi Liu, Amit Ojha, Houtan Jebelli

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Work-related musculoskeletal disorders (WMSDs) are a leading cause of injury for workers who are performing physically demanding and repetitive construction tasks. With recent advances in robotics, wearable robots are introduced into the construction industry to mitigate the risk of WMSDs by correcting the workers' postures and reducing the load exerted on their body joints. While wearable robots promise to reduce the muscular and physical demands on workers to perform tasks, there is a lack of understanding of the impact of wearable robots on worker ergonomics. This lack of understanding may lead to new ergonomic injuries for workers wearing exoskeletons. To bridge this gap, this study aims to assess the workers' ergonomic risk when using a wearable robot (back-support exoskeleton) in one of the most common construction tasks, material handling. In this research, a vision-based pose estimation algorithm was developed to estimate the pose of the worker while wearing a back-support exoskeleton. As per the estimated pose, joint angles between connected body parts were calculated. Then, the worker's ergonomic risk was assessed from the calculated angles based on the Rapid Entire Body Assessment (REBA) method. Results showed that using the back-support exoskeleton reduced workers' ergonomic risk by 31.7% by correcting awkward postures of the trunk and knee during material handling tasks, compared to not using the back-support exoskeleton. The results are expected to facilitate the implementation of wearable robots in the construction industry.

Original languageEnglish (US)
Title of host publicationComputing in Civil Engineering 2023
Subtitle of host publicationResilience, Safety, and Sustainability - Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023
EditorsYelda Turkan, Joseph Louis, Fernanda Leite, Semiha Ergan
PublisherAmerican Society of Civil Engineers
Pages331-339
Number of pages9
ISBN (Electronic)9780784485248
DOIs
StatePublished - 2024
Externally publishedYes
EventASCE International Conference on Computing in Civil Engineering 2023: Resilience, Safety, and Sustainability, i3CE 2023 - Corvallis, United States
Duration: Jun 25 2023Jun 28 2023

Publication series

NameComputing in Civil Engineering 2023: Resilience, Safety, and Sustainability - Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023

Conference

ConferenceASCE International Conference on Computing in Civil Engineering 2023: Resilience, Safety, and Sustainability, i3CE 2023
Country/TerritoryUnited States
CityCorvallis
Period6/25/236/28/23

ASJC Scopus subject areas

  • General Computer Science
  • Civil and Structural Engineering

Fingerprint

Dive into the research topics of 'Vision-Based Ergonomic Risk Assessment of Back-Support Exoskeleton for Construction Workers in Material Handling Tasks'. Together they form a unique fingerprint.

Cite this