Vision-based dynamic coverage control for nonholonomic agents

Research output: Contribution to journalConference articlepeer-review


This paper considers dynamic coverage control for nonholonomic agents along with collision avoidance guarantees. The novelties of the approach rely on the consideration of anisotropic sensing, which is realized via conic sensing footprints and sensing (coverage) functions for each agent, and on a novel form of avoidance functions. The considered sensing functions encode field-of-view and range constraints, and also the degradation of effective sensing close to the boundaries of the sensing footprint. Thus the proposed approach is suitable for surveillance applications where each agent is assigned with the task to gather enough information, such as video streaming in an obstacle environment. The efficacy of the approach is demonstrated through simulation results.

Original languageEnglish (US)
Article number7039724
Pages (from-to)2198-2203
Number of pages6
JournalProceedings of the IEEE Conference on Decision and Control
Issue numberFebruary
StatePublished - 2014
Event2014 53rd IEEE Annual Conference on Decision and Control, CDC 2014 - Los Angeles, United States
Duration: Dec 15 2014Dec 17 2014

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint Dive into the research topics of 'Vision-based dynamic coverage control for nonholonomic agents'. Together they form a unique fingerprint.

Cite this