TY - JOUR
T1 - Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents
AU - Paul, Tias
AU - Miller, Penney L.
AU - Strathmann, Timothy J.
PY - 2007/7/1
Y1 - 2007/7/1
N2 - This study reports on the photocatalytic transformation of fluoroquinolone antibacterial agents (ciprofloxacin, enrofloxacin, norfloxacin, and flumequine) in aqueous titanium dioxide (TiO2) suspensions irradiated with ultraviolet (UV; λ > 324 nm) or visible light (λ > 400, > 420, or > 450 nm). Visible-light-mediated fluoroquinolone degradation is unexpected from direct photolysis or established TiO2 band gap photoexcitation mechanisms, which both require UV light. Visible-light-mediated photocatalysis requires an appropriate conduction band electron acceptor (e.g., O2, BrO3-), but is not dependent upon hydroxyl radical, superoxide, or other reactive oxygen species generated upon TiO 2 band gap excitation. The process slows considerably when fluoroquinolone adsorption is inhibited. Whereas fluoroquinolone decomposition in UV-irradiated TiO2 suspensions is accompanied by mineralization, no changes in dissolved organic carbon occur during visible-light-photocatalyzed degradation. Results are consistent with a proposed charge-transfer mechanism initiated by photoexcitation of surface-complexed fluoroquinolone molecules. Complexation to the TiO2 surface causes a red shift in the fluoroquinolone absorption spectrum (via ligand-to-metal charge transfer), enabling photoexcitation by visible light. Fluoroquinolone oxidation then occurs by electron transfer into the TiO2 conduction band, which delivers the electron to an adsorbed electron acceptor. The lack of organic carbon mineralization indicates formation of stable organic byproducts that are resistant to further degradation by visible light. In UV-irradiated TiO 2 suspensions, the charge-transfer mechanism acts in parallel with the semiconductor band gap photoexcitation mechanism.
AB - This study reports on the photocatalytic transformation of fluoroquinolone antibacterial agents (ciprofloxacin, enrofloxacin, norfloxacin, and flumequine) in aqueous titanium dioxide (TiO2) suspensions irradiated with ultraviolet (UV; λ > 324 nm) or visible light (λ > 400, > 420, or > 450 nm). Visible-light-mediated fluoroquinolone degradation is unexpected from direct photolysis or established TiO2 band gap photoexcitation mechanisms, which both require UV light. Visible-light-mediated photocatalysis requires an appropriate conduction band electron acceptor (e.g., O2, BrO3-), but is not dependent upon hydroxyl radical, superoxide, or other reactive oxygen species generated upon TiO 2 band gap excitation. The process slows considerably when fluoroquinolone adsorption is inhibited. Whereas fluoroquinolone decomposition in UV-irradiated TiO2 suspensions is accompanied by mineralization, no changes in dissolved organic carbon occur during visible-light-photocatalyzed degradation. Results are consistent with a proposed charge-transfer mechanism initiated by photoexcitation of surface-complexed fluoroquinolone molecules. Complexation to the TiO2 surface causes a red shift in the fluoroquinolone absorption spectrum (via ligand-to-metal charge transfer), enabling photoexcitation by visible light. Fluoroquinolone oxidation then occurs by electron transfer into the TiO2 conduction band, which delivers the electron to an adsorbed electron acceptor. The lack of organic carbon mineralization indicates formation of stable organic byproducts that are resistant to further degradation by visible light. In UV-irradiated TiO 2 suspensions, the charge-transfer mechanism acts in parallel with the semiconductor band gap photoexcitation mechanism.
UR - http://www.scopus.com/inward/record.url?scp=34447270963&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34447270963&partnerID=8YFLogxK
U2 - 10.1021/es070097q
DO - 10.1021/es070097q
M3 - Article
C2 - 17695920
AN - SCOPUS:34447270963
VL - 41
SP - 4720
EP - 4727
JO - Environmental Science & Technology
JF - Environmental Science & Technology
SN - 0013-936X
IS - 13
ER -