Viscoelastic and viscoplastic mechanical behavior of polymeric nanofibers: An experimental and theoretical approach

M. Naraghi, I. Chasiotis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The viscous behavior of polymers in nanometer scale volumes can significantly differ from bulk, due to the large free surfaces and the dominating molecular heterogeneity at nanoscale. In this study, we present the first experimental investigation on the creep and strain rate behavior of electrospun polyacrylonitrile (PAN) nanofibers. The apparatus used in this study was a MEMS-based platform, developed by the authors with the addition of a feedback loop to (a) maintain constant force on a nanofiber during a creep experiment and (b) vary the applied strain rate to investigate the viscoplastic response of amorphous polymer nanofibers. The creep compliance was found to be highly dependent on the nanofiber diameter, increasing with its diameter. In agreement with previous literature studies, it was concluded that the higher stiffness of thinner nanofibers was due to higher molecular alignment. A semi-empirical model was proposed to describe the experimentally determined viscous response of the PAN nanofibers, was composed of a Langevin spring and an Eyring's dashpot to capture the strain rate sensitive yield stress and the orientation hardening observed in our experiments. The present experiments coupled with the semi-empirical model are among the first efforts to understand viscous phenomena at the nanoscale.

Original languageEnglish (US)
Title of host publicationSociety for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Pages1349-1354
Number of pages6
StatePublished - Nov 9 2010
EventSEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010 - Indianapolis, IN, United States
Duration: Jun 7 2010Jun 10 2010

Publication series

NameSociety for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Volume2

Other

OtherSEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Country/TerritoryUnited States
CityIndianapolis, IN
Period6/7/106/10/10

ASJC Scopus subject areas

  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Viscoelastic and viscoplastic mechanical behavior of polymeric nanofibers: An experimental and theoretical approach'. Together they form a unique fingerprint.

Cite this