Virus-Sized Gold Nanorods: Plasmonic Particles for Biology

Catherine J. Murphy, Huei Huei Chang, Priscila Falagan-Lotsch, Matthew T. Gole, Daniel M. Hofmann, Khoi Nguyen L. Hoang, Sophia M. McClain, Sean M. Meyer, Jacob G. Turner, Mahima Unnikrishnan, Meng Wu, Xi Zhang, Yishu Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

ConspectusPlasmons, collective oscillations of conduction-band electrons in nanoscale metals, are well-known phenomena in colloidal gold and silver nanocrystals that produce brilliant visible colors in these materials that depend on the nanocrystal size and shape. Under illumination at or near the plasmon bands, gold and silver nanocrystals exhibit properties that enable fascinating biological applications: (i) the nanocrystals elastically scatter light, providing a straightforward way to image them in complex aqueous environments; (ii) the nanocrystals produce local electric fields that enable various surface-enhanced spectroscopies for sensing, molecular diagnostics, and boosting of bound fluorophore performance; (iii) the nanocrystals produce heat, which can lead to chemical transformations at or near the nanocrystal surface and can photothermally destroy nearby cells.While all the above-mentioned applications have already been well-demonstrated in the literature, this Account focuses on several other aspects of these nanomaterials, in particular gold nanorods that are approximately the size of viruses (diameters of ?10 nm, lengths up to 100 nm). Absolute extinction, scattering, and absorption properties are compared for gold nanorods of various absolute dimensions, and references for how to synthesize gold nanorods with four different absolute dimensions are provided. Surface chemistry strategies for coating nanocrystals with smooth or rough shells are detailed; specific examples include mesoporous silica and metal-organic framework shells for porous (rough) coatings and polyelectrolyte layer-by-layer wrapping for "smooth" shells. For self-assembled-monolayer molecular coating ligands, the smoothest shells of all, a wide range of ligand densities have been reported from many experiments, yielding values from less than 1 to nearly 10 molecules/nm2 depending on the nanocrystal size and the nature of the ligand. Systematic studies of ligand density for one particular ligand with a bulky headgroup are highlighted, showing that the highest ligand density occurs for the smallest nanocrystals, even though these ligand headgroups are the most mobile as judged by NMR relaxation studies. Biomolecular coronas form around spherical and rod-shaped nanocrystals upon immersion into biological fluids; these proteins and lipids can be quantified, and their degree of adsorption depends on the nanocrystal surface chemistry as well as the biophysical characteristics of the adsorbing biomolecule. Photothermal adsorption and desorption of proteins on nanocrystals depend on the enthalpy of protein-nanocrystal surface interactions, leading to light-triggered alteration in protein concentrations near the nanocrystals. At the cellular scale, gold nanocrystals exert genetic changes at the mRNA level, with a variety of likely mechanisms that include alteration of local biomolecular concentration gradients, changes in mechanical properties of the extracellular matrix, and physical interruption of key cellular processes - even without plasmonic effects. Microbiomes, both organismal and environmental, are the likely first point of contact of nanomaterials with natural living systems; we see a major scientific frontier in understanding, predicting, and controlling microbe-nanocrystal interactions, which may be augmented by plasmonic effects.

Original languageEnglish (US)
Pages (from-to)2124-2135
Number of pages12
JournalAccounts of chemical research
Volume52
Issue number8
DOIs
StatePublished - Aug 20 2019

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint Dive into the research topics of 'Virus-Sized Gold Nanorods: Plasmonic Particles for Biology'. Together they form a unique fingerprint.

Cite this