TY - GEN
T1 - Virtual battery
T2 - 2008 Real-Time Systems Symposium, RTSS 2008
AU - Cao, Qing
AU - Fesehaye, Debessay
AU - Pham, Nam
AU - Sarwar, Yusuf
AU - Abdelzahe, Tarek
PY - 2008
Y1 - 2008
N2 - This paper introduces the abstraction of energy reserves for sensor networks that virtualizes energy sources. It gives each of several applications sharing a platform the illusion of having its own private energy source. Energy virtualization is the next logical step in embedded systems after virtualizing communication links and CPU capacity. Energy virtualization has not been addressed in past sensor network literature because most current wireless sensor networks feature single-user applications. To amortize deployment costs, future sensor networks, deployed in remote or hardto- access areas, will likely be leveraged by scientists from different disciplines, each having their independent application for their individual research purposes. Platforms, planned for such deployment, will be fitted with the union of sensors needed, but independent applications will share the remaining resources such as in-field storage and communication bandwidth, calling for quotas and isolation mechanisms. The most expensive resource shared in sensor networks is energy. This paper provides an energy isolation mechanism, called the virtual battery, that logically divides energy among applications to provide each its private energy reserve. An application can manage its private energy independently as if it were running alone on the platform. The application is terminated when its reserve is depleted. We implement and evaluate this abstraction onMicaZ motes running LiteOS. Our results show that the virtual battery mechanism succeeds at exporting the private reserve abstraction accurately and at a low overhead.
AB - This paper introduces the abstraction of energy reserves for sensor networks that virtualizes energy sources. It gives each of several applications sharing a platform the illusion of having its own private energy source. Energy virtualization is the next logical step in embedded systems after virtualizing communication links and CPU capacity. Energy virtualization has not been addressed in past sensor network literature because most current wireless sensor networks feature single-user applications. To amortize deployment costs, future sensor networks, deployed in remote or hardto- access areas, will likely be leveraged by scientists from different disciplines, each having their independent application for their individual research purposes. Platforms, planned for such deployment, will be fitted with the union of sensors needed, but independent applications will share the remaining resources such as in-field storage and communication bandwidth, calling for quotas and isolation mechanisms. The most expensive resource shared in sensor networks is energy. This paper provides an energy isolation mechanism, called the virtual battery, that logically divides energy among applications to provide each its private energy reserve. An application can manage its private energy independently as if it were running alone on the platform. The application is terminated when its reserve is depleted. We implement and evaluate this abstraction onMicaZ motes running LiteOS. Our results show that the virtual battery mechanism succeeds at exporting the private reserve abstraction accurately and at a low overhead.
UR - http://www.scopus.com/inward/record.url?scp=67249114404&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67249114404&partnerID=8YFLogxK
U2 - 10.1109/RTSS.2008.41
DO - 10.1109/RTSS.2008.41
M3 - Conference contribution
AN - SCOPUS:67249114404
SN - 9780769534770
T3 - Proceedings - Real-Time Systems Symposium
SP - 123
EP - 133
BT - Proceedings - 2008 Real-Time Systems Symposium, RTSS 2008
Y2 - 30 November 2008 through 3 December 2008
ER -