Abstract
Fast volumetric microscopy is required to monitor large-scale neural ensembles with high spatio-temporal resolution. Widefield fluorescence microscopy can image large 2D fields of view at high resolution and speed while remaining simple and costeffective. A focal sweep add-on can further extend the capacity of widefield microscopy by enabling extended-depth-of-field (EDOF) imaging, but suffers from an inability to reject out-of-focus fluorescence background. Here, by using a digital micromirror device to target only in-focus sample features, we perform EDOF imaging with greatly enhanced contrast and signal-to-noise ratio, while reducing the light dosage delivered to the sample. Image quality is further improved by the application of a robust deconvolution algorithm. We demonstrate the advantages of our technique for in vivo calcium imaging in the mouse brain.
Original language | English (US) |
---|---|
Article number | 7921 |
Journal | Scientific reports |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2018 |
Externally published | Yes |
ASJC Scopus subject areas
- General