Abstract

Motion estimation is a common ingredient in many state-of-the-art video processing algorithms, serving as an effective way to capture the spatial-temporal correlation in video signals. However, the robustness of motion estimation often suffers from problems such as ambiguities of motion trajectory (i.e. the aperture problem) and illumination variances. In this paper, we explore a new framework for video processing based on the recently proposed surfacelet transform. Instead of containing an explicit motion estimation step, the surfacelet transform provides a motion-selective subband decomposition for video signals. We demonstrate the potential of this new technique in a video denoising application.

Original languageEnglish (US)
Title of host publicationConference Record of the 40th Asilomar Conference on Signals, Systems and Computers, ACSSC '06
Pages883-887
Number of pages5
DOIs
StatePublished - 2006
Event40th Asilomar Conference on Signals, Systems, and Computers, ACSSC '06 - Pacific Grove, CA, United States
Duration: Oct 29 2006Nov 1 2006

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (Print)1058-6393

Other

Other40th Asilomar Conference on Signals, Systems, and Computers, ACSSC '06
Country/TerritoryUnited States
CityPacific Grove, CA
Period10/29/0611/1/06

ASJC Scopus subject areas

  • Signal Processing
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Video processing using the 3-dimensional surfacelet transform'. Together they form a unique fingerprint.

Cite this