Abstract
The vertical scaling requirements for gate stacks and for shallow extension junctions are reviewed. For gate stacks, considerable progress has been made in optimizing oxide/nitride and oxynitride dielectrics to reduce boron penetration and dielectric leakage compared to pure SiO2 in order to allow sub-2-nm dielectrics. Several promising alternative material candidates exist for 1-nm equivalent oxide thickness (EOT) - for example, HfO2, ZrO2, and their silicates. Nevertheless, considerable challenges lie ahead if we are to achieve an EOT of less than 0.5 nm. If only a single molecular interface layer of oxide is needed to preserve high channel mobility, it seems likely that an EOT of 0.4-0.5 nm would represent the physical limit of dielectric scaling, but even then with a very high leakage (∼105 A/cm2). For junctions, the main challenge lies in providing low parasitic series resistance as depths are scaled in order to reduce short-channel effects. Because contacts are ultimately expected to dominate the parasitic resistance, low-barrier-height contacts and/or very heavily doped junctions will be required. While ion implantation and annealing processes can certainly be extended to meet the junction-depth and series-resistance requirements for additional generations, alternative low-temperature deposition processes that produce either metastably or extraordinarily activated, abruptly doped regions seem better suited to solve the contact resistance problem.
Original language | English (US) |
---|---|
Pages (from-to) | 299-315 |
Number of pages | 17 |
Journal | IBM Journal of Research and Development |
Volume | 46 |
Issue number | 2-3 |
DOIs | |
State | Published - 2002 |
Externally published | Yes |
ASJC Scopus subject areas
- General Computer Science