Vectorized Batch Private Information Retrieval

Muhammad Haris Mughees, Ling Ren

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper studies Batch Private Information Retrieval (BatchPIR), a variant of private information retrieval (PIR) where the client wants to retrieve multiple entries from the server in one batch. BatchPIR matches the use case of many practical applications and holds the potential for substantial efficiency improvements over PIR in terms of amortized cost per query. Existing BatchPIR schemes have achieved decent computation efficiency but have not been able to improve communication efficiency at all. Using vectorized homomorphic encryption, we present the first BatchPIR protocol that is efficient in both computation and communication for a variety of database configurations. Specifically, to retrieve a batch of 256 entries from a database with one million entries of 256 bytes each, the communication cost of our scheme is 7.5x to 98.5x better than state-of-the-art solutions.

Original languageEnglish (US)
Title of host publicationProceedings - 44th IEEE Symposium on Security and Privacy, SP 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages437-452
Number of pages16
ISBN (Electronic)9781665493369
DOIs
StatePublished - 2023
Event44th IEEE Symposium on Security and Privacy, SP 2023 - Hybrid, San Francisco, United States
Duration: May 22 2023May 25 2023

Publication series

NameProceedings - IEEE Symposium on Security and Privacy
Volume2023-May
ISSN (Print)1081-6011

Conference

Conference44th IEEE Symposium on Security and Privacy, SP 2023
Country/TerritoryUnited States
CityHybrid, San Francisco
Period5/22/235/25/23

Keywords

  • Homomorphic-Encryption
  • Private-data
  • Private-information-retrieval

ASJC Scopus subject areas

  • Safety, Risk, Reliability and Quality
  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Vectorized Batch Private Information Retrieval'. Together they form a unique fingerprint.

Cite this