Varying the ratio of Lys:Met while maintaining the ratios of Thr:Phe, Lys:Thr, Lys:His, and Lys:Val alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription

X. Dong, Z. Zhou, B. Saremi, A. Helmbrecht, Z. Wang, J. J. Loor

Research output: Contribution to journalArticlepeer-review

Abstract

Amino acids are not only precursors for but also signaling molecules regulating protein synthesis. Regulation of protein synthesis via AA occurs at least in part by alterations in the phosphorylation status of mammalian target of rapamycin (mTOR) pathway proteins. Although the ideal profile of Lys:Met to promote milk protein synthesis during established lactation in dairy cows has been proposed to be 3:1, aside from being the most-limiting AA for milk protein synthesis, the role of Met in other key biologic pathways such as methylation is not well characterized in the bovine. The objective of this study was to determine the influence of increasing supplemental Met, based on the ideal 3:1 ratio of Lys to Met, on intracellular metabolism related to protein synthesis and mTOR pathway phosphorylation status. MAC-T cells, an immortalized bovine mammary epithelial cell line, were incubated (n = 5 replicates/treatment) for 12 h with 3 incremental doses of Met while holding Lys concentration constant to achieve the following: Lys:Met 2.9:1 (ideal AA ratio; IPAA), Lys:Met 2.5:1 (LM2.5), and Lys:Met 2.0:1 (LM2.0). The ratios of Thr:Phe (1.05:1), Lys:Thr (1.8:1), Lys:His (2.38:1), and Lys:Val (1.23:1) were the same across the 3 treatments. Applying gas chromatography–mass spectrometry metabolomics revealed distinct clusters of differentially concentrated metabolites in response to Lys:Met. Lower Phe, branched-chain AA, and putrescine concentrations were observed with LM2.5 compared with IPAA. Apart from greater intracellular Met concentrations, further elevations in Met level (LM2.0) led to greater intracellular concentrations of nonessential AA (Pro, Glu, Gln, and Gly) compared with IPAA and greater essential AA (EAA; Met, Ile, and Leu) and nonessential AA (Pro, Gly, Ala, Gln, and Glu) compared with LM2.5. However, compared with IPAA, mRNA expression of β-casein and AA transporters (SLC7A5, SLC36A1, SLC38A2, SLC38A9, and SLC43A1) and mTOR phosphorylation were lower in response to LM2.5 and LM2.0. Overall, the results of this study provide evidence that increasing Met while Lys and the ratios of Phe, Thr, His, and Val relative to Lys were held constant could increase the concentration and utilization of intracellular EAA, in particular branched-chain AA, potentially through improving the activity of AA transporters partly controlled by mTOR signaling. Because EAA likely are metabolized by other tissues upon absorption, a question for future in vivo studies is whether formulating diets for optimal ratios of EAA in the metabolizable protein is sufficient to provide the desired levels of these AA to the mammary cells.

Original languageEnglish (US)
Pages (from-to)1708-1718
Number of pages11
JournalJournal of Dairy Science
Volume101
Issue number2
DOIs
StatePublished - Feb 2018

Keywords

  • MAC-T cell
  • lysine:methionine ratio
  • metabolomics
  • milk protein synthesis

ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology
  • Genetics

Fingerprint Dive into the research topics of 'Varying the ratio of Lys:Met while maintaining the ratios of Thr:Phe, Lys:Thr, Lys:His, and Lys:Val alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription'. Together they form a unique fingerprint.

Cite this