VARIUS-TC: A modular architecture-level model of parametric variation for thin-channel switches

S. Karen Khatamifard, Michael Resch, Nam Sung Kim, Ulya R. Karpuzcu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Under aggressive miniaturization, unconventional digital switches rapidly come to light, which introduce new sources of variation in design parameters, and hence challenge the manufacturing process further. As a result, performance and power of manufactured hardware becomes greatly unpredictable. Characterizing variation-incurred unpredictability at early stages of the design necessitates dependable architecture-level models of variation, which distill device- and circuit-level details to accurately evaluate system-level implications. In this paper, we introduce a modular architecture-level model of parametric variation to address this challenge. As a case study, we refine our discussion to a representative class of emerging thin-channel switches, FinFETs.

Original languageEnglish (US)
Title of host publicationProceedings of the 34th IEEE International Conference on Computer Design, ICCD 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages654-661
Number of pages8
ISBN (Electronic)9781509051427
DOIs
StatePublished - Nov 22 2016
Event34th IEEE International Conference on Computer Design, ICCD 2016 - Scottsdale, United States
Duration: Oct 2 2016Oct 5 2016

Publication series

NameProceedings of the 34th IEEE International Conference on Computer Design, ICCD 2016

Other

Other34th IEEE International Conference on Computer Design, ICCD 2016
Country/TerritoryUnited States
CityScottsdale
Period10/2/1610/5/16

ASJC Scopus subject areas

  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'VARIUS-TC: A modular architecture-level model of parametric variation for thin-channel switches'. Together they form a unique fingerprint.

Cite this