TY - GEN
T1 - Variational inference for crowdsourcing
AU - Liu, Qiang
AU - Peng, Jian
AU - Ihler, Alexander
PY - 2012
Y1 - 2012
N2 - Crowdsourcing has become a popular paradigm for labeling large datasets. However, it has given rise to the computational task of aggregating the crowdsourced labels provided by a collection of unreliable annotators. We approach this problem by transforming it into a standard inference problem in graphical models, and applying approximate variational methods, including belief propagation (BP) and mean field (MF). We show that our BP algorithm generalizes both majority voting and a recent algorithm by Karger et al. [1], while our MF method is closely related to a commonly used EM algorithm. In both cases, we find that the performance of the algorithms critically depends on the choice of a prior distribution on the workers' reliability; by choosing the prior properly, both BP and MF (and EM) perform surprisingly well on both simulated and real-world datasets, competitive with state-of-the-art algorithms based on more complicated modeling assumptions.
AB - Crowdsourcing has become a popular paradigm for labeling large datasets. However, it has given rise to the computational task of aggregating the crowdsourced labels provided by a collection of unreliable annotators. We approach this problem by transforming it into a standard inference problem in graphical models, and applying approximate variational methods, including belief propagation (BP) and mean field (MF). We show that our BP algorithm generalizes both majority voting and a recent algorithm by Karger et al. [1], while our MF method is closely related to a commonly used EM algorithm. In both cases, we find that the performance of the algorithms critically depends on the choice of a prior distribution on the workers' reliability; by choosing the prior properly, both BP and MF (and EM) perform surprisingly well on both simulated and real-world datasets, competitive with state-of-the-art algorithms based on more complicated modeling assumptions.
UR - http://www.scopus.com/inward/record.url?scp=84877752474&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877752474&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84877752474
SN - 9781627480031
T3 - Advances in Neural Information Processing Systems
SP - 692
EP - 700
BT - Advances in Neural Information Processing Systems 25
T2 - 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Y2 - 3 December 2012 through 6 December 2012
ER -