TY - GEN
T1 - Variable fidelity modeling in closed loop dynamical systems
AU - Williams, Matthew A.
AU - Alleyne, Andrew G
PY - 2014
Y1 - 2014
N2 - In the early stages of control system development, designers often require multiple iterations for purposes of validating control designs in simulation. This has the potential to make high fidelity models undesirable due to increased computational complexity and time required for simulation. As a solution, lower fidelity or simplified models are used for initial designs before controllers are tested on higher fidelity models. In the event that unmodeled dynamics cause the controller to fail when applied on a higher fidelity model, an iterative approach involving designing and validating a controller's performance may be required. In this paper, a switched-fidelity modeling formulation for closed loop dynamical systems is proposed to reduce computational effort while maintaining elevated accuracy levels of system outputs and control inputs. The effects on computational effort and accuracy are investigated by applying the formulation to a traditional vapor compression system with high and low fidelity models of the evaporator and condenser. This sample case showed the ability of the switched fidelity framework to closely match the outputs and inputs of the high fidelity model while decreasing computational cost by 32% from the high fidelity model. For contrast, the low fidelity model decreases computational cost by 48% relative to the high fidelity model.
AB - In the early stages of control system development, designers often require multiple iterations for purposes of validating control designs in simulation. This has the potential to make high fidelity models undesirable due to increased computational complexity and time required for simulation. As a solution, lower fidelity or simplified models are used for initial designs before controllers are tested on higher fidelity models. In the event that unmodeled dynamics cause the controller to fail when applied on a higher fidelity model, an iterative approach involving designing and validating a controller's performance may be required. In this paper, a switched-fidelity modeling formulation for closed loop dynamical systems is proposed to reduce computational effort while maintaining elevated accuracy levels of system outputs and control inputs. The effects on computational effort and accuracy are investigated by applying the formulation to a traditional vapor compression system with high and low fidelity models of the evaporator and condenser. This sample case showed the ability of the switched fidelity framework to closely match the outputs and inputs of the high fidelity model while decreasing computational cost by 32% from the high fidelity model. For contrast, the low fidelity model decreases computational cost by 48% relative to the high fidelity model.
UR - http://www.scopus.com/inward/record.url?scp=84929233306&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929233306&partnerID=8YFLogxK
U2 - 10.1115/DSCC2014-6159
DO - 10.1115/DSCC2014-6159
M3 - Conference contribution
AN - SCOPUS:84929233306
T3 - ASME 2014 Dynamic Systems and Control Conference, DSCC 2014
BT - Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy
PB - American Society of Mechanical Engineers
T2 - ASME 2014 Dynamic Systems and Control Conference, DSCC 2014
Y2 - 22 October 2014 through 24 October 2014
ER -