Variability in the execution of multimedia applications and implications for architecture

Christopher J. Hughes, Praful Kaul, Sarita V. Adve, Rohit Jain, Chanik Park, Jayanth Srinivasan

Research output: Contribution to journalArticlepeer-review


Multimedia applications are an increasingly important workload for general-purpose processors. This paper analyzes frame-level execution time variability for several multimedia applications on general-purpose architectures. There are two reasons for such an analysis. First, it has been conjectured that complex features of such architectures (e.g., out-of-order issue) result in unpredictable execution times, making them unsuitable for meeting real-time requirements of multimedia applications. Our analysis tests this conjecture. Second, such an analysis can be used to effectively employ recently proposed adaptive architectures. We find that while execution time varies from frame to frame for many multimedia applications, the variability is mostly caused by the application algorithm and the media input. Aggressive architectural features induce little additional variability (and unpredictability) in execution time, in contrast to conventional wisdom. The presence of frame-level execution time variability motivates frame-level architectural adaptation (e.g., to save energy). Additionally, our results show that execution time generally varies slowly, implying it is possible to dynamically predict the behavior of future frames on a variety of hardware configurations for effective adaptation.

Original languageEnglish (US)
Pages (from-to)254-265
Number of pages12
JournalConference Proceedings - Annual International Symposium on Computer Architecture, ISCA
StatePublished - 2001

ASJC Scopus subject areas

  • Hardware and Architecture


Dive into the research topics of 'Variability in the execution of multimedia applications and implications for architecture'. Together they form a unique fingerprint.

Cite this