TY - GEN
T1 - Value of reservoir storage for resilient power plant cooling and basin-wide water availability
AU - Stillwell, Ashlynn Suzanne
AU - Webber, Michael E.
PY - 2012
Y1 - 2012
N2 - Since many thermoelectric power plants use water for cooling, the power sector is vulnerable to droughts, heat waves, and other water constraints. At the same time, large water demands for power generation can strain water availability for other users in a river basin. Opportunities exist for power plants to decrease freshwater demands, increasing both drought resiliency of power plants and water availability for other users in the basin. One particular method of decreasing freshwater demands for power plants is by incorporating reservoir storage into cooling operations. Using reservoir storage allows water to be recirculated and reused for power plant cooling, thereby decreasing water withdrawal requirements. Water storage also has the added benefit of making water available during times of shortage. While storage is known to be beneficial, no tools exist to explicitly quantify the basin-wide water availability impacts and increased power generation resiliency possible via constructing water storage at thermoelectric power plants without existing reservoirs. Here we present the results of modeling efforts regarding the value (both in terms of resiliency and water availability) of reservoir storage for power plant cooling and basin-wide water availability in the Brazos and Colorado River basins, using a customized river basin based-model along with existing Texas Water Availability Models. Results vary between river basins and different water availability models, with construction of new reservoirs generally increasing basin-wide water availability in the Brazos River basin and generally decreasing basin-wide water availability in the Colorado River basin. We conclude that the value of reservoir storage for power plant resiliency and basinwide water availability is highly site-specific.
AB - Since many thermoelectric power plants use water for cooling, the power sector is vulnerable to droughts, heat waves, and other water constraints. At the same time, large water demands for power generation can strain water availability for other users in a river basin. Opportunities exist for power plants to decrease freshwater demands, increasing both drought resiliency of power plants and water availability for other users in the basin. One particular method of decreasing freshwater demands for power plants is by incorporating reservoir storage into cooling operations. Using reservoir storage allows water to be recirculated and reused for power plant cooling, thereby decreasing water withdrawal requirements. Water storage also has the added benefit of making water available during times of shortage. While storage is known to be beneficial, no tools exist to explicitly quantify the basin-wide water availability impacts and increased power generation resiliency possible via constructing water storage at thermoelectric power plants without existing reservoirs. Here we present the results of modeling efforts regarding the value (both in terms of resiliency and water availability) of reservoir storage for power plant cooling and basin-wide water availability in the Brazos and Colorado River basins, using a customized river basin based-model along with existing Texas Water Availability Models. Results vary between river basins and different water availability models, with construction of new reservoirs generally increasing basin-wide water availability in the Brazos River basin and generally decreasing basin-wide water availability in the Colorado River basin. We conclude that the value of reservoir storage for power plant resiliency and basinwide water availability is highly site-specific.
UR - http://www.scopus.com/inward/record.url?scp=84887299191&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887299191&partnerID=8YFLogxK
U2 - 10.1115/IMECE2012-87150
DO - 10.1115/IMECE2012-87150
M3 - Conference contribution
AN - SCOPUS:84887299191
SN - 9780791845226
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
SP - 737
EP - 742
BT - ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
T2 - ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
Y2 - 9 November 2012 through 15 November 2012
ER -