In this review, we summarize the recent developments in the emerging field of bioactuators across a multitude of length scales. First, we discuss the use and control of biomolecules as nanoscale actuators. Molecular motors, such as DNA, kinesin, myosin, and F1-ATPase, have been shown to exert forces in the range between 1 pN to 45 pN. Second, we discuss the use and control of single and small clusters of cells to power microscale devices. Microorganisms, such as flagellated bacteria, protozoa, and algae, can naturally swim at speeds between 20 μm s-1 to 2 mm s-1 and produce thrust forces between 0.3 pN to 200 pN. Individual and clustered mammalian cells, such as cardiac and skeletal cells, can produce even higher contractile forces between 80 nN to 3.5 μN. Finally, we discuss the use and control of 2D- and 3D-assembled muscle tissues and muscle tissue explants as bioactuators to power devices. Depending on the size, composition, and organization of these hierarchical tissue constructs, contractile forces have been demonstrated to produce between 25 μN to 1.18 mN.

Original languageEnglish (US)
Pages (from-to)653-670
Number of pages18
JournalLab on a chip
Issue number4
StatePublished - Feb 21 2014

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • General Chemistry
  • Biomedical Engineering


Dive into the research topics of 'Utilization and control of bioactuators across multiple length scales'. Together they form a unique fingerprint.

Cite this