Using Shape to Categorize: Low-Shot Learning with an Explicit Shape Bias

Stefan Stojanov, Anh Thai, James M. Rehg

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

It is widely accepted that reasoning about object shape is important for object recognition. However, the most powerful object recognition methods today do not explicitly make use of object shape during learning. In this work, motivated by recent developments in low-shot learning, findings in developmental psychology, and the increased use of synthetic data in computer vision research, we investigate how reasoning about 3D shape can be used to improve low-shot learning methods' generalization performance. We propose a new way to improve existing low-shot learning approaches by learning a discriminative embedding space using 3D object shape, and using this embedding by learning how to map images into it. Our new approach improves the performance of image-only low-shot learning approaches on multiple datasets. We also introduce Toys4K, a 3D object dataset with the largest number of object categories currently available, which supports low-shot learning.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Pages1798-1808
Number of pages11
ISBN (Electronic)9781665445092
DOIs
StatePublished - 2021
Externally publishedYes
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: Jun 19 2021Jun 25 2021

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online
Period6/19/216/25/21

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Using Shape to Categorize: Low-Shot Learning with an Explicit Shape Bias'. Together they form a unique fingerprint.

Cite this