Using recurrence network approach to quantify nonlinear dynamics of skin blood flow in response to loading pressure

Fuyuan Liao, Yih Kuen Jan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a recurrence network approach to quantify dynamic complexity of skin blood flow oscillations (BFO) in response to loading pressure. This approach consists of three processes, including 1) phase space reconstruction by means of time delay embedding, 2) construction of a recurrence matrix that represents neighboring states in phase space, and 3) consideration of the recurrence matrix as an adjacency matrix representing links in a network and the use of clustering coefficients to characterize phase space properties. By using the Lorenz system and real data, we demonstrate that the global clustering coefficient is robust to the embedding parameters. We applied this approach to study skin BFO at baseline and during loading pressure, a causative factor of skin breakdown. The results showed that global clustering coefficients of BFO significantly decreased in response to loading ( <0.05). Moreover, surrogate tests indicated that such a decrease was associated with a loss of nonlinearity of BFO. Our results suggest that the recurrence network approach can practically quantify the nonlinear dynamics of BFO.

Original languageEnglish (US)
Title of host publication2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012
Pages4196-4199
Number of pages4
DOIs
StatePublished - 2012
Externally publishedYes
Event34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012 - San Diego, CA, United States
Duration: Aug 28 2012Sep 1 2012

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
Country/TerritoryUnited States
CitySan Diego, CA
Period8/28/129/1/12

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Using recurrence network approach to quantify nonlinear dynamics of skin blood flow in response to loading pressure'. Together they form a unique fingerprint.

Cite this