Using message-driven objects to mask latency in grid computing applications

Gregory A. Koenig, Laxmikant V Kale

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

One of the attractive features of Grid computing is that resources in geographically distant places can be mobilized to meet computational needs as they arise. A particularly challenging issue is that of executing a single application across multiple machines that are separated by large distances. While certain classes of applications such as pipeline style or master-slave style applications may run well in Grid computing environments with little or no modification, tightly-coupled applications require significant work to achieve good performance. In this paper, we demonstrate that message-driven objects, implemented in the Charm++ and Adaptive MPI systems, can be used to mask the effects of latency in Grid computing environments without requiring modification of application software. We examine a simple five-point stencil decomposition application as well as a more complex molecular dynamics application running in an environment in which arbitrary artificial latencies can be induced between pairs of nodes. Performance of the applications running under artificial latencies are compared to the performance of the applications running across TeraGrid nodes located at the National Center for Supercomputing Applications andArgonne National Laboratory.

Original languageEnglish (US)
Title of host publicationProceedings - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005
DOIs
StatePublished - Dec 1 2005
Event19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005 - Denver, CO, United States
Duration: Apr 4 2005Apr 8 2005

Publication series

NameProceedings - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005
Volume2005

Other

Other19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005
CountryUnited States
CityDenver, CO
Period4/4/054/8/05

    Fingerprint

ASJC Scopus subject areas

  • Engineering(all)

Cite this

Koenig, G. A., & Kale, L. V. (2005). Using message-driven objects to mask latency in grid computing applications. In Proceedings - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005 [1419935] (Proceedings - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005; Vol. 2005). https://doi.org/10.1109/IPDPS.2005.446