TY - JOUR
T1 - Using L-Arginine-Functionalized Gold Nanorods for Visible Detection of Mercury(II) Ions
T2 - L-arginine-functionalized AuNRs for Hg2+ detection…
AU - Guan, Jiehao
AU - Wang, Yi-cheng
AU - Gunasekaran, Sundaram
PY - 2015/4/1
Y1 - 2015/4/1
N2 - A rapid and simple approach for visible determination of mercury ions (Hg(2+) ) in aqueous solutions was developed based on surface plasmon resonance phenomenon using L-arginine-functionalized gold nanorods (AuNRs). At pH greater than 9, the deprotonated amine group of L-arginine on the AuNRs bound with Hg(2+) leading to the side-by-side assembly of AuNRs, which was verified by transmission electron microscopy images. Thus, when Hg(2+) was present in the test solution, a blue shift of the typical longitudinal plasmon band of the AuNRs was observed in the ultra violet-visible-near infrared (UV-Vis-NIR) spectra, along with a change in the color of the solution, which occurred within 5 min. After carefully optimizing the potential factors affecting the performance, the L-arginine/AuNRs sensing system was found to be highly sensitive to Hg(2+) , with the limit of detection of 5 nM (S/N = 3); it is also very selective and free of interference from 10 other metal ions (Ba(2+) , Ca(2+) , Cd(2+) , Co(2+) , Cs(+) , Cu(2+) , K(+) , Li(+) , Ni(2+) , Pb(2+) ). The result suggests that the L-arginine-functionalized AuNRs can potentially serve as a rapid, sensitive, and easy-to-use colorimetric biosensor useful for determining Hg(2+) in food and environmental samples.
AB - A rapid and simple approach for visible determination of mercury ions (Hg(2+) ) in aqueous solutions was developed based on surface plasmon resonance phenomenon using L-arginine-functionalized gold nanorods (AuNRs). At pH greater than 9, the deprotonated amine group of L-arginine on the AuNRs bound with Hg(2+) leading to the side-by-side assembly of AuNRs, which was verified by transmission electron microscopy images. Thus, when Hg(2+) was present in the test solution, a blue shift of the typical longitudinal plasmon band of the AuNRs was observed in the ultra violet-visible-near infrared (UV-Vis-NIR) spectra, along with a change in the color of the solution, which occurred within 5 min. After carefully optimizing the potential factors affecting the performance, the L-arginine/AuNRs sensing system was found to be highly sensitive to Hg(2+) , with the limit of detection of 5 nM (S/N = 3); it is also very selective and free of interference from 10 other metal ions (Ba(2+) , Ca(2+) , Cd(2+) , Co(2+) , Cs(+) , Cu(2+) , K(+) , Li(+) , Ni(2+) , Pb(2+) ). The result suggests that the L-arginine-functionalized AuNRs can potentially serve as a rapid, sensitive, and easy-to-use colorimetric biosensor useful for determining Hg(2+) in food and environmental samples.
KW - colorimetric sensor
KW - food safety
KW - green synthesis
KW - heavy metal
KW - surface plasmon resonance
KW - water quality
U2 - 10.1111/jfds.2015.80.issue-4
DO - 10.1111/jfds.2015.80.issue-4
M3 - Article
C2 - 25754066
SN - 0022-1147
VL - 80
SP - N828-N833
JO - Journal of Food Science
JF - Journal of Food Science
IS - 4
ER -