TY - CONF
T1 - USING A GDSS TO FACILITATE GROUP CONSENSUS
T2 - SOME INTENDED AND UNIMTENDED CONSEQUENCES
AU - Watson, Richard G.
AU - Desanctis, Gerardine
AU - Poole, Marshall Scott
N1 - Publisher Copyright:
© 1987, Association for Information Systems. All rights reserved.
PY - 1987
Y1 - 1987
N2 - The empirical research examining group decision support systems suggests that many of the hopes for GDSS can be realized. For example, Lewis (1982) and, more recently, Gallupe (1985) both found that groups supported by a GDSS made higher quality decisions than groups without GDSS support. Applegate (1986) and Steeb and Johnston (1981) have demonstrated the viability of GDSS in live planning situations. Positive effects of a GDSS on groups have also been reported by Gray et al. (1981), Turoff and Hiltz (1982), and Siegel et al. (1986). Computer support has been shown to foster a democratic approach to the decision process, with more equality of participation among members (Siegel et at. 1986), to improve satisfaction with the decision process (Applegate 1986), and to result in a greater shift away from initial individual preferences (Siegel et al. 1986). These intended effects of the technology have been demonstrated for a limited number of task types. To date, positive effects of GDSS have been observed for idea generation (Applegate 1986; Lewis 1982), problem finding (Gallupe 1985), intellective choice (i.e., selection of a "correct" answer among a given set of alternatives) (Hiltz and Turoff 1982), and planning tasks (Applegate 1986; Steeb and Johnston 1981). In two of these studies, group members were dispersed and interacted with one another via a communication network (Hiltz and Turoff 1982; Siegel et al. 1986), while in the other studies group members met in a face-to-face (i.e., conference room) setting. In all cases, each member had direct interaction with the GDSS, and in most of the studies the performance of the group was compared to an objective measure of decision quality. Of course, many organizational meetings occur without prior or post knowledge of the "correct" outcome of a group meeting. For this reason, the current study aimed to build on the available knowledge of GDSS impacts by examining the usefulness of the technology in situations where a group must resolve competing personal preferences and maximize agreement on a solution to a problem. In such situations, achieving high decision quality is not the primary goal of the group meeting. The theory of GDSS would argue that the technology should be as useful in achieving consensus as in identifying correct solutions. In either situation, the GDSS should foster more even participation in the decision and a more systematic, or structured, group decision process (DeSanctis and Gallupe 1987; Huber 1984a). For the most part GDSS research is being conducted in laboratory settings where the organizational context and other factors can be controlled so that the impact of the technology on group outcomes can be carefully assessed. The current study aimed to build on the available GDSS research by systematically comparing groups supported with a GDSS with groups that had either no support whatsoever ("baseline" groups) or a paper-and-pencil ("manual") support system, that contained the same decision structure as the GDSS (cf. Lewis 1982). The purpose of having two control groups was to determine whether increments or decrements in outcomes were due to the GDSS or simply due to imposing a problem-solving structure on the group.
AB - The empirical research examining group decision support systems suggests that many of the hopes for GDSS can be realized. For example, Lewis (1982) and, more recently, Gallupe (1985) both found that groups supported by a GDSS made higher quality decisions than groups without GDSS support. Applegate (1986) and Steeb and Johnston (1981) have demonstrated the viability of GDSS in live planning situations. Positive effects of a GDSS on groups have also been reported by Gray et al. (1981), Turoff and Hiltz (1982), and Siegel et al. (1986). Computer support has been shown to foster a democratic approach to the decision process, with more equality of participation among members (Siegel et at. 1986), to improve satisfaction with the decision process (Applegate 1986), and to result in a greater shift away from initial individual preferences (Siegel et al. 1986). These intended effects of the technology have been demonstrated for a limited number of task types. To date, positive effects of GDSS have been observed for idea generation (Applegate 1986; Lewis 1982), problem finding (Gallupe 1985), intellective choice (i.e., selection of a "correct" answer among a given set of alternatives) (Hiltz and Turoff 1982), and planning tasks (Applegate 1986; Steeb and Johnston 1981). In two of these studies, group members were dispersed and interacted with one another via a communication network (Hiltz and Turoff 1982; Siegel et al. 1986), while in the other studies group members met in a face-to-face (i.e., conference room) setting. In all cases, each member had direct interaction with the GDSS, and in most of the studies the performance of the group was compared to an objective measure of decision quality. Of course, many organizational meetings occur without prior or post knowledge of the "correct" outcome of a group meeting. For this reason, the current study aimed to build on the available knowledge of GDSS impacts by examining the usefulness of the technology in situations where a group must resolve competing personal preferences and maximize agreement on a solution to a problem. In such situations, achieving high decision quality is not the primary goal of the group meeting. The theory of GDSS would argue that the technology should be as useful in achieving consensus as in identifying correct solutions. In either situation, the GDSS should foster more even participation in the decision and a more systematic, or structured, group decision process (DeSanctis and Gallupe 1987; Huber 1984a). For the most part GDSS research is being conducted in laboratory settings where the organizational context and other factors can be controlled so that the impact of the technology on group outcomes can be carefully assessed. The current study aimed to build on the available GDSS research by systematically comparing groups supported with a GDSS with groups that had either no support whatsoever ("baseline" groups) or a paper-and-pencil ("manual") support system, that contained the same decision structure as the GDSS (cf. Lewis 1982). The purpose of having two control groups was to determine whether increments or decrements in outcomes were due to the GDSS or simply due to imposing a problem-solving structure on the group.
UR - http://www.scopus.com/inward/record.url?scp=84910768892&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84910768892&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:84910768892
SP - 339
EP - 402
ER -