Use of particle methods for understanding hypersonic shock boundary layer interactions

Ozgur Tumuklu, Deborah A. Levin, Vassilios Theofilis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The study of laminar, shock boundary layer interactions is performed using direct simulation Monte Carlo and linear stability theory for Edney type IV flows over a double wedge and a double cone. The high-fidelity time accurate simulations are shown to characterize the complex shock interactions of such flows as well as their unsteadiness. Comparison of bow shock oscillations and Kelvin-Helmholtz instabilities are found to be consistent with earlier values in the literature.

Original languageEnglish (US)
Title of host publication31st International Symposium on Rarefied Gas Dynamics, RGD 2018
EditorsDuncan Lockerby, David R. Emerson, Lei Wu, Yonghao Zhang
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735418745
DOIs
StatePublished - Aug 5 2019
Externally publishedYes
Event31st International Symposium on Rarefied Gas Dynamics, RGD 2018 - Glasgow, United Kingdom
Duration: Jul 23 2018Jul 27 2018

Publication series

NameAIP Conference Proceedings
Volume2132
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference31st International Symposium on Rarefied Gas Dynamics, RGD 2018
Country/TerritoryUnited Kingdom
CityGlasgow
Period7/23/187/27/18

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Use of particle methods for understanding hypersonic shock boundary layer interactions'. Together they form a unique fingerprint.

Cite this