Update relevant image weights for content-based image retrieval using support vector machines

Q. Tian, P. Hong, T. S. Huang

Research output: Contribution to conferencePaperpeer-review

Abstract

Relevance feedback has been a powerful tool for interactive Content-Based Image Retrieval (CBIR). During the retrieval process, the user selects the most relevant images and provides a weight of preference for each relevant image. User's high level query and perception subjectivity can be captured to some extent by dynamically updated low-level feature weights based on the user's feedback. However, in MARS only the positive feedbacks, i.e., relevant images are considered. In this paper, a novel approach is proposed by providing both positive and negative feedbacks for Support Vector Machines (SVM) learning. The SVM learning results are used to update the weights of preference for relevant images. Priorities are given to the positive feedbacks that have larger distances to the hyperplane determined by the support vectors. This approach releases the user from manually providing preference weight for each positive example, i.e., relevant image as before. Experimental results show that the proposed approach has reasonable improvement over relevance feedback with possible examples only.

Original languageEnglish (US)
Pages1199-1202
Number of pages4
StatePublished - 2000
Event2000 IEEE International Conference on Multimedia and Expo (ICME 2000) - New York, NY, United States
Duration: Jul 30 2000Aug 2 2000

Other

Other2000 IEEE International Conference on Multimedia and Expo (ICME 2000)
Country/TerritoryUnited States
CityNew York, NY
Period7/30/008/2/00

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Update relevant image weights for content-based image retrieval using support vector machines'. Together they form a unique fingerprint.

Cite this