TY - JOUR
T1 - Untargeted metabolomics and lipidomics to assess plasma metabolite changes in dairy goats with subclinical hyperketonemia
AU - Huang, Yan
AU - Kong, Yezi
AU - Shen, Bingyu
AU - Li, Bowen
AU - Loor, Juan J.
AU - Tan, Panpan
AU - Wei, Bo
AU - Mei, Linshan
AU - Zhang, Zixin
AU - Zhao, Chenxu
AU - Zhu, Xiaoyan
AU - Qi, Simeng
AU - Wang, Jianguo
N1 - This work was supported by the National Natural Science Foundation of China (Beijing, China; grant no. 32273085, 32272967, and 32102742). The authors are credited for their contributions as follows: Yan Huang, formal analysis, writing-original draft preparation; Yezi Kong, data curation, investigation, methodology; Bingyu Shen, methodology, writing-reviewing, and editing; Bowen Li, software, data curation, formal analysis; Juan J. Loor, writing-reviewing and editing; Panpan Tan, data curation; Bo Wei, formal analysis; Linshan Mei, formal analysis; Zixin Zhang, investigation; Chenxu Zhao, methodology, formal analysis; Xiaoyan Zhu, writing-reviewing and editing; Simeng Qi, software; Jianguo Wang, conceptualization, writing-reviewing and editing, supervision. The authors have not stated any conflicts of interest.
PY - 2023/5
Y1 - 2023/5
N2 - Subclinical hyperketonemia (SCHK) is the major metabolic disease observed during the transition period in dairy goats, and is characterized by high plasma levels of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). However, no prior study has comprehensively assessed metabolomic profiles of dairy goats with SCHK. Plasma samples were collected within 1 h after kidding from SCHK goats (BHB concentration >0.8 mM, n = 7) and clinically healthy goats (BHB concentration <0.8 mM, n = 7) with similar body condition score (2.75 ± 0.15, mean ± standard error of the mean) and parity (primiparous). A combination of targeted and untargeted mass spectrometric approaches was employed for analyzing the various changes in the plasma lipidome and metabolome. Statistical analyses were performed using the GraphPad Prism 8.0, SIMCA-P software (version 14.1), and R packages (version 4.1.3). Plasma aminotransferase, nonesterified fatty acids, and BHB concentrations were greater in the SCHK group, but plasma glucose concentrations were lower. A total of 156 metabolites and 466 lipids were identified. The analysis of untargeted metabolomics data by principal component analysis and orthogonal partial least squares discriminant analysis revealed a separation between SCHK and clinically healthy goats. According to the screening criteria (unpaired t-test, P < 0.05), 30 differentially altered metabolites and 115 differentially altered lipids were detected. Pathway enrichment analysis identified citrate cycle, alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine metabolism as significantly altered pathways. A greater concentration of plasma isocitric acid and cis-aconitic acid levels was observed in SCHK goats. In addition, AA such as lysine and isoleucine were greater, whereas alanine and phenylacetylglycine were lower in SCHK dairy goats. Dairy goats with SCHK also exhibited greater oleic acid, acylcarnitine, and phosphatidylcholine and lower choline and sphingomyelins. Acylcarnitines, oleic acid, and tridecanoic acid displayed positive correlations with several lipid species. Alanine, hippuric acid, and histidinyl-phenylalanine were negatively correlated with several lipids. Overall, altered metabolites in SCHK dairy goats indicated a more severe degree of negative energy balance. Data also indicated an imbalance in the tricarboxylic acid (TCA) cycle, lipid metabolism, and AA metabolism. The findings provide a more comprehensive understanding of the pathogenesis of SCHK in dairy goats.
AB - Subclinical hyperketonemia (SCHK) is the major metabolic disease observed during the transition period in dairy goats, and is characterized by high plasma levels of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). However, no prior study has comprehensively assessed metabolomic profiles of dairy goats with SCHK. Plasma samples were collected within 1 h after kidding from SCHK goats (BHB concentration >0.8 mM, n = 7) and clinically healthy goats (BHB concentration <0.8 mM, n = 7) with similar body condition score (2.75 ± 0.15, mean ± standard error of the mean) and parity (primiparous). A combination of targeted and untargeted mass spectrometric approaches was employed for analyzing the various changes in the plasma lipidome and metabolome. Statistical analyses were performed using the GraphPad Prism 8.0, SIMCA-P software (version 14.1), and R packages (version 4.1.3). Plasma aminotransferase, nonesterified fatty acids, and BHB concentrations were greater in the SCHK group, but plasma glucose concentrations were lower. A total of 156 metabolites and 466 lipids were identified. The analysis of untargeted metabolomics data by principal component analysis and orthogonal partial least squares discriminant analysis revealed a separation between SCHK and clinically healthy goats. According to the screening criteria (unpaired t-test, P < 0.05), 30 differentially altered metabolites and 115 differentially altered lipids were detected. Pathway enrichment analysis identified citrate cycle, alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine metabolism as significantly altered pathways. A greater concentration of plasma isocitric acid and cis-aconitic acid levels was observed in SCHK goats. In addition, AA such as lysine and isoleucine were greater, whereas alanine and phenylacetylglycine were lower in SCHK dairy goats. Dairy goats with SCHK also exhibited greater oleic acid, acylcarnitine, and phosphatidylcholine and lower choline and sphingomyelins. Acylcarnitines, oleic acid, and tridecanoic acid displayed positive correlations with several lipid species. Alanine, hippuric acid, and histidinyl-phenylalanine were negatively correlated with several lipids. Overall, altered metabolites in SCHK dairy goats indicated a more severe degree of negative energy balance. Data also indicated an imbalance in the tricarboxylic acid (TCA) cycle, lipid metabolism, and AA metabolism. The findings provide a more comprehensive understanding of the pathogenesis of SCHK in dairy goats.
KW - dairy goat
KW - lipidomics
KW - subclinical hyperketonemia
KW - untargeted metabolomics
UR - http://www.scopus.com/inward/record.url?scp=85151647832&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85151647832&partnerID=8YFLogxK
U2 - 10.3168/jds.2022-22812
DO - 10.3168/jds.2022-22812
M3 - Article
C2 - 37028962
AN - SCOPUS:85151647832
SN - 0022-0302
VL - 106
SP - 3692
EP - 3705
JO - Journal of Dairy Science
JF - Journal of Dairy Science
IS - 5
ER -