Unsupervised Differentiable Multi-aspect Network Embedding

Chanyoung Park, Carl Yang, Qi Zhu, Donghyun Kim, Hwanjo Yu, Jiawei Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Network embedding is an influential graph mining technique for representing nodes in a graph as distributed vectors. However, the majority of network embedding methods focus on learning a single vector representation for each node, which has been recently criticized for not being capable of modeling multiple aspects of a node. To capture the multiple aspects of each node, existing studies mainly rely on offline graph clustering performed prior to the actual embedding, which results in the cluster membership of each node (i.e., node aspect distribution) fixed throughout training of the embedding model. We argue that this not only makes each node always have the same aspect distribution regardless of its dynamic context, but also hinders the end-to-end training of the model that eventually leads to the final embedding quality largely dependent on the clustering. In this paper, we propose a novel end-to-end framework for multi-aspect network embedding, called asp2vec, in which the aspects of each node are dynamically assigned based on its local context. More precisely, among multiple aspects, we dynamically assign a single aspect to each node based on its current context, and our aspect selection module is end-to-end differentiable via the Gumbel-Softmax trick. We also introduce the aspect regularization framework to capture the interactions among the multiple aspects in terms of relatedness and diversity. We further demonstrate that our proposed framework can be readily extended to heterogeneous networks. Extensive experiments towards various downstream tasks on various types of homogeneous networks and a heterogeneous network demonstrate the superiority of asp2vec.

Original languageEnglish (US)
Title of host publicationKDD 2020 - Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1435-1445
Number of pages11
ISBN (Electronic)9781450379984
DOIs
StatePublished - Aug 23 2020
Event26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020 - Virtual, Online, United States
Duration: Aug 23 2020Aug 27 2020

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020
CountryUnited States
CityVirtual, Online
Period8/23/208/27/20

Keywords

  • graph mining
  • network embedding
  • representation learning

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint Dive into the research topics of 'Unsupervised Differentiable Multi-aspect Network Embedding'. Together they form a unique fingerprint.

Cite this