Unsupervised attributed multiplex network embedding

Chanyoung Park, Donghyun Kim, Jiawei Han, Hwanjo Yu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Nodes in a multiplex network are connected by multiple types of relations. However, most existing network embedding methods assume that only a single type of relation exists between nodes. Even for those that consider the multiplexity of a network, they overlook node attributes, resort to node labels for training, and fail to model the global properties of a graph. We present a simple yet effective unsupervised network embedding method for attributed multiplex network called DMGI, inspired by Deep Graph Infomax (DGI) that maximizes the mutual information between local patches of a graph, and the global representation of the entire graph. We devise a systematic way to jointly integrate the node embeddings from multiple graphs by introducing 1) the consensus regularization framework that minimizes the disagreements among the relation-type specific node embeddings, and 2) the universal discriminator that discriminates true samples regardless of the relation types. We also show that the attention mechanism infers the importance of each relation type, and thus can be useful for filtering unnecessary relation types as a preprocessing step. Extensive experiments on various downstream tasks demonstrate that DMGI outperforms the state-of-the-art methods, even though DMGI is fully unsupervised.

Original languageEnglish (US)
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAAAI Press
Pages5371-5378
Number of pages8
ISBN (Electronic)9781577358350
StatePublished - 2020
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: Feb 7 2020Feb 12 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Conference

Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
Country/TerritoryUnited States
CityNew York
Period2/7/202/12/20

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Unsupervised attributed multiplex network embedding'. Together they form a unique fingerprint.

Cite this