Unstructured sequential testing in sensor networks

Georgios Fellouris, Alexander Tartakovsky

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider the problem of quickly detecting a signal in a sensor network when the subset of sensors in which signal may be present is completely unknown. We formulate this problem as a sequential hypothesis testing problem with a simple null (signal is absent everywhere) and a composite alternative (signal is present somewhere). We introduce a novel class of scalable sequential tests which, for any subset of affected sensors, minimize the expected sample size for a decision asymptotically, that is as the error probabilities go to 0. Moreover, we propose sequential tests that require minimal transmission activity from the sensors to the fusion center, while preserving this asymptotic optimality property.

Original languageEnglish (US)
Title of host publication2013 IEEE 52nd Annual Conference on Decision and Control, CDC 2013
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4784-4789
Number of pages6
ISBN (Print)9781467357173
DOIs
StatePublished - 2013
Event52nd IEEE Conference on Decision and Control, CDC 2013 - Florence, Italy
Duration: Dec 10 2013Dec 13 2013

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Other

Other52nd IEEE Conference on Decision and Control, CDC 2013
Country/TerritoryItaly
CityFlorence
Period12/10/1312/13/13

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Unstructured sequential testing in sensor networks'. Together they form a unique fingerprint.

Cite this