Unsteady flow physics of airfoil dynamic stall

Rohit Gupta, Phillip J. Ansell

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A series of wind-tunnel experiments were conducted on a dynamically pitching airfoil in order to understand the unsteady flow physics associated with dynamic stall. An NACA 0012 airfoil was dynamically pitched about the quarter-chord axis using with a linear ramp maneuver at Re = 500,000 and ω+= 0.05. A series of high-frequency unsteady surface pressure measurements were acquired, which actively displayed the movement of boundary-layer transition across the surface, along with the formation and convection of the dynamic stall vortex. A detailed time-frequency analysis of the surface pressure measurements also revealed the evolutionary behavior of the unsteady flow structures during the pitch maneuver, including the development of high-frequency turbulent flow oscillations prior to the formation of the dynamic stall vortex. Time-resolved particle image velocimetry data revealed the formation of coherent vortical structures after suction breakdown at the airfoil leading-edge region, which collectively interact to form the dynamic stall vortex.

Original languageEnglish (US)
Title of host publicationAIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Electronic)9781624104473
DOIs
StatePublished - 2017
Event55th AIAA Aerospace Sciences Meeting - Grapevine, United States
Duration: Jan 9 2017Jan 13 2017

Publication series

NameAIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Other

Other55th AIAA Aerospace Sciences Meeting
Country/TerritoryUnited States
CityGrapevine
Period1/9/171/13/17

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Unsteady flow physics of airfoil dynamic stall'. Together they form a unique fingerprint.

Cite this