Unstable surface waves in running water

Research output: Contribution to journalArticlepeer-review


We consider the stability of periodic gravity free-surface water waves traveling downstream at a constant speed over a shear flow of finite depth. In case the free surface is flat, a sharp criterion of linear instability is established for a general class of shear flows with inflection points and the maximal unstable wave number is found. Comparison to the rigid-wall setting testifies that the free surface has a destabilizing effect. For a class of unstable shear flows, the bifurcation of nontrivial periodic traveling waves is demonstrated at all wave numbers. We show the linear instability of small nontrivial waves that appear after bifurcation at an unstable wave number of the background shear flow. The proof uses a new formulation of the linearized water-wave problem and a perturbation argument. An example of the background shear flow of unstable small-amplitude periodic traveling waves is constructed for an arbitrary vorticity strength and for an arbitrary depth, illustrating that vorticity has a subtle influence on the stability of free-surface water waves.

Original languageEnglish (US)
Pages (from-to)733-796
Number of pages64
JournalCommunications in Mathematical Physics
Issue number3
StatePublished - Sep 2008
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics


Dive into the research topics of 'Unstable surface waves in running water'. Together they form a unique fingerprint.

Cite this