Abstract

Dielectric permittivity is central to many biological and physiochemical systems, as it affects the long-range electrostatic interactions. Similar to many fluid properties, confinement greatly alters the dielectric response of polar liquids. Many studies have focused on the reduction of the dielectric response of water under confinement. Here, using molecular dynamics simulations, statistical-mechanical theories, and multiscale methods, we study the out-of-plane (z-axis) dielectric response of protic and aprotic fluids confined inside slit-like graphene channels. We show that the reduction in perpendicular permittivity is universal for all the fluids and exhibits a Langevin-like behavior as a function of channel width. We show that this reduction is due to the favorable in-plane (x−y plane) dipole−dipole electrostatic interactions of the interfacial fluid layer. Furthermore, we observe an anomalously low dielectric response under an extreme confinement.

Original languageEnglish (US)
Pages (from-to)12761-12770
Number of pages10
JournalACS Nano
Volume14
Issue number10
DOIs
StatePublished - Oct 27 2020

Keywords

  • Confined fluids
  • Dielectric constant
  • Langevin function
  • Molecular dynamics
  • Multiscale
  • Universal reduction

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Universal reduction in dielectric response of confined fluids'. Together they form a unique fingerprint.

Cite this