Unimolecular Polypeptide Micelles via Ultrafast Polymerization of N-Carboxyanhydrides

Shixian Lv, Hojun Kim, Ziyuan Song, Lin Feng, Yingfeng Yang, Ryan Baumgartner, Kuan Ying Tseng, Shen J. Dillon, Cecilia Leal, Lichen Yin, Jianjun Cheng

Research output: Contribution to journalArticlepeer-review

Abstract

Polypeptide micelles are widely used as biocompatible nanoplatforms but often suffer from their poor structural stability. Unimolecular polypeptide micelles can effectively address the structure instability issue, but their synthesis with uniform structure and well-controlled and desired sizes remains challenging. Herein we report the convenient preparation of spherical unimolecular micelles through dendritic polyamine-initiated ultrafast ring-opening polymerization of N-carboxyanhydrides (NCAs). Synthetic polypeptides with exceptionally high molecular weights (up to 85 MDa) and low dispersity (Đ < 1.05) can be readily obtained, which are the biggest synthetic polypeptides ever reported. The degree of polymerization was controlled in a vast range (25-3200), giving access to nearly monodisperse unimolecular micelles with predictable sizes. Many NCA monomers can be polymerized using this ultrafast polymerization method, which enables the incorporation of various structural and functional moieties into the unimolecular micelles. Because of the simplicity of the synthesis and superior control over the structure, the unimolecular polypeptide micelles may find applications in nanomedicine, supermolecular chemistry, and bionanotechnology.

Original languageEnglish (US)
Pages (from-to)8570-8574
Number of pages5
JournalJournal of the American Chemical Society
Volume142
Issue number19
DOIs
StatePublished - May 13 2020

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Unimolecular Polypeptide Micelles via Ultrafast Polymerization of N-Carboxyanhydrides'. Together they form a unique fingerprint.

Cite this