TY - JOUR
T1 - Understanding variability in optimum plant density and recommendation domains for crowding stress tolerant processing sweet corn
AU - Dhaliwal, Daljeet S.
AU - Williams, Martin M.
N1 - Funding Information:
The authors received no specific funding for this work. The experimental approach was initially inspired by M. Williams discussions with a sweet corn grower attending the 2013 Processed Vegetable Growers Clinic in Lomira, WI. The authors wish to acknowledge Del Monte Foods, Inc., including many of their staff. Their dedication to sustainability and in-kind support made this on-farm research possible. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Dept. of Agriculture and does not imply its approval to the exclusion of other products or vendors that also may be suitable. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.
Publisher Copyright:
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Recent research shows significant economic benefit if the processing sweet corn [Zea mays L. var. rugosa (or saccharata)] industry grew crowding stress tolerant (CST) hybrids at their optimum plant densities, which may exceed current plant densities by up to 14,500 plants ha-1. However, optimum plant density of individual fields varies over years and across the Upper Midwest (Illinois, Minnesota and Wisconsin), where processing sweet corn is concentrated. The objectives of this study were to: (1) determine the extent to which environmental and management practices affect optimum plant density and, (2) identify the most appropriate recommendation domain for making decisions on plant density. To capture spatial and temporal variability in optimum plant density, on-farm experiments were conducted at thirty fields across the states of Illinois, Minnesota and Wisconsin, from 2013 to 2017. Exploratory factor analysis of twelve environmental and management variables revealed two factors, one related to growing period and the other defining soil type, which explained the maximum variability observed across all the fields. These factors were then used to quantify the strength of associations with optimum plant density. Pearson’s partial correlation coefficients of ‘growing period’ and ‘soil type’ with optimum plant density were low (ρ1 = -0.14 and ρ2 = -0.09, respectively) and non-significant (P = 0.47 and 0.65, respectively). To address the second objective, six candidate recommendation domain models (RDM) were developed and tested. Linear mixed effects models describing crop response to plant density were fit to each level of each candidate RDM. The difference in profitability observed at the current plant density for a field and the optimum plant density under RDM level represented the additional processor profit ($ ha-1) from a field. The RDM built around ‘Production Area’ (RDMPA) appears most suitable, because plant density recommendations based on RDMPA maximized processor profits as well grower returns better than other RDMs.
AB - Recent research shows significant economic benefit if the processing sweet corn [Zea mays L. var. rugosa (or saccharata)] industry grew crowding stress tolerant (CST) hybrids at their optimum plant densities, which may exceed current plant densities by up to 14,500 plants ha-1. However, optimum plant density of individual fields varies over years and across the Upper Midwest (Illinois, Minnesota and Wisconsin), where processing sweet corn is concentrated. The objectives of this study were to: (1) determine the extent to which environmental and management practices affect optimum plant density and, (2) identify the most appropriate recommendation domain for making decisions on plant density. To capture spatial and temporal variability in optimum plant density, on-farm experiments were conducted at thirty fields across the states of Illinois, Minnesota and Wisconsin, from 2013 to 2017. Exploratory factor analysis of twelve environmental and management variables revealed two factors, one related to growing period and the other defining soil type, which explained the maximum variability observed across all the fields. These factors were then used to quantify the strength of associations with optimum plant density. Pearson’s partial correlation coefficients of ‘growing period’ and ‘soil type’ with optimum plant density were low (ρ1 = -0.14 and ρ2 = -0.09, respectively) and non-significant (P = 0.47 and 0.65, respectively). To address the second objective, six candidate recommendation domain models (RDM) were developed and tested. Linear mixed effects models describing crop response to plant density were fit to each level of each candidate RDM. The difference in profitability observed at the current plant density for a field and the optimum plant density under RDM level represented the additional processor profit ($ ha-1) from a field. The RDM built around ‘Production Area’ (RDMPA) appears most suitable, because plant density recommendations based on RDMPA maximized processor profits as well grower returns better than other RDMs.
UR - http://www.scopus.com/inward/record.url?scp=85079082573&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85079082573&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0228809
DO - 10.1371/journal.pone.0228809
M3 - Article
C2 - 32032371
AN - SCOPUS:85079082573
SN - 1932-6203
VL - 15
JO - PloS one
JF - PloS one
IS - 2
M1 - e0228809
ER -