Understanding Interfacial Alignment in Solution Coated Conjugated Polymer Thin Films

Ge Qu, Xikang Zhao, Gregory M. Newbloom, Fengjiao Zhang, Erfan Mohammadi, Joseph W. Strzalka, Lilo D. Pozzo, Jianguo Mei, Ying Diao

Research output: Contribution to journalArticlepeer-review


Domain alignment in conjugated polymer thin films can significantly enhance charge carrier mobility. However, the alignment mechanism during meniscus-guided solution coating remains unclear. Furthermore, interfacial alignment has been rarely studied despite its direct relevance and critical importance to charge transport. In this study, we uncover a significantly higher degree of alignment at the top interface of solution coated thin films, using a donor-acceptor conjugated polymer, poly(diketopyrrolopyrrole-co-thiophene-co-thieno[3,2-b]thiophene-co-thiophene) (DPP2T-TT), as the model system. At the molecular level, we observe in-plane π-π stacking anisotropy of up to 4.8 near the top interface with the polymer backbone aligned parallel to the coating direction. The bulk of the film is only weakly aligned with the backbone oriented transverse to coating. At the mesoscale, we observe a well-defined fibril-like morphology at the top interface with the fibril long axis pointing toward the coating direction. Significantly smaller fibrils with poor orientational order are found on the bottom interface, weakly aligned orthogonal to the fibrils on the top interface. The high degree of alignment at the top interface leads to a charge transport anisotropy of up to 5.4 compared to an anisotropy close to 1 on the bottom interface. We attribute the formation of distinct interfacial morphology to the skin-layer formation associated with high Peclet number, which promotes crystallization on the top interface while suppressing it in the bulk. We further infer that the interfacial fibril alignment is driven by the extensional flow on the top interface arisen from increasing solvent evaporation rate closer to the meniscus front.

Original languageEnglish (US)
Pages (from-to)27863-27874
Number of pages12
JournalACS Applied Materials and Interfaces
Issue number33
StatePublished - Aug 23 2017


  • alignment
  • charge transport
  • conjugated polymer
  • interfacial
  • morphology
  • polymer crystallization
  • solution printing

ASJC Scopus subject areas

  • Materials Science(all)


Dive into the research topics of 'Understanding Interfacial Alignment in Solution Coated Conjugated Polymer Thin Films'. Together they form a unique fingerprint.

Cite this