Under-canopy dataset for advancing simultaneous localization and mapping in agricultural robotics

Jose Cuaran, Andres Eduardo Baquero Velasquez, Mateus Valverde Gasparino, Naveen Kumar Uppalapati, Arun Narenthiran Sivakumar, Justin Wasserman, Muhammad Huzaifa, Sarita Adve, Girish Chowdhary

Research output: Contribution to journalArticlepeer-review

Abstract

Simultaneous localization and mapping (SLAM) has been an active research problem over recent decades. Many leading solutions are available that can achieve remarkable performance in environments with familiar structure, such as indoors and cities. However, our work shows that these leading systems fail in an agricultural setting, particularly in under the canopy navigation in the largest-in-acreage crops of the world: corn (Zea mays) and soybean (Glycine max). The presence of plenty of visual clutter due to leaves, varying illumination, and stark visual similarity makes these environments lose the familiar structure on which SLAM algorithms rely on. To advance SLAM in such unstructured agricultural environments, we present a comprehensive agricultural dataset. Our open dataset consists of stereo images, IMUs, wheel encoders, and GPS measurements continuously recorded from a mobile robot in corn and soybean fields across different growth stages. In addition, we present best-case benchmark results for several leading visual-inertial odometry and SLAM systems. Our data and benchmark clearly show that there is significant research promise in SLAM for agricultural settings. The dataset is available online at: https://github.com/jrcuaranv/terrasentia-dataset.

Original languageEnglish (US)
JournalInternational Journal of Robotics Research
DOIs
StateAccepted/In press - 2023

Keywords

  • Agricultural robotics
  • agricultural dataset
  • simultaneous localization and mapping
  • visual odometry

ASJC Scopus subject areas

  • Software
  • Modeling and Simulation
  • Mechanical Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Under-canopy dataset for advancing simultaneous localization and mapping in agricultural robotics'. Together they form a unique fingerprint.

Cite this